Collaborating Authors

Traditional vs Deep Learning Algorithms in the Telecom Industry


The unprecedented growth of mobile devices, applications and services have placed the utmost demand on mobile and wireless networking infrastructure. Rapid research and development of 5G systems have found ways to support mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Moreover, inference from heterogeneous mobile data from distributed devices experiences challenges due to computational and battery power limitations. As a result, models employed in the edge-based scenario are constrained to light-weight to achieve a trade-off between model complexity and accuracy. Also, model compression, pruning, and quantization are largely in place.

Mobile big data analysis with machine learning Machine Learning

This paper investigates to identify the requirement and the development of machine learning-based mobile big data analysis through discussing the insights of challenges in the mobile big data (MBD). Furthermore, it reviews the state-of-the-art applications of data analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently adopted methods of data analysis are reviewed. Three typical applications of MBD analysis, namely wireless channel modeling, human online and offline behavior analysis, and speech recognition in the internet of vehicles, are introduced respectively. Finally, we summarize the main challenges and future development directions of mobile big data analysis.

6G White Paper on Edge Intelligence Artificial Intelligence

In this white paper we provide a vision for 6G Edge Intelligence. Moving towards 5G and beyond the future 6G networks, intelligent solutions utilizing data-driven machine learning and artificial intelligence become crucial for several real-world applications including but not limited to, more efficient manufacturing, novel personal smart device environments and experiences, urban computing and autonomous traffic settings. We present edge computing along with other 6G enablers as a key component to establish the future 2030 intelligent Internet technologies as shown in this series of 6G White Papers. In this white paper, we focus in the domains of edge computing infrastructure and platforms, data and edge network management, software development for edge, and real-time and distributed training of ML/AI algorithms, along with security, privacy, pricing, and end-user aspects. We discuss the key enablers and challenges and identify the key research questions for the development of the Intelligent Edge services. As a main outcome of this white paper, we envision a transition from Internet of Things to Intelligent Internet of Intelligent Things and provide a roadmap for development of 6G Intelligent Edge.

Machine Learning at the Network Edge: A Survey Machine Learning

Devices comprising the Internet of Things, such as sensors and small cameras, usually have small memories and limited computational power. The proliferation of such resource-constrained devices in recent years has led to the generation of large quantities of data. These data-producing devices are appealing targets for machine learning applications but struggle to run machine learning algorithms due to their limited computing capability. They typically offload input data to external computing systems (such as cloud servers) for further processing. The results of the machine learning computations are communicated back to the resource-scarce devices, but this worsens latency, leads to increased communication costs, and adds to privacy concerns. Therefore, efforts have been made to place additional computing devices at the edge of the network, i.e close to the IoT devices where the data is generated. Deploying machine learning systems on such edge devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning has been deployed at the edge of computer networks.

AI-Aided Integrated Terrestrial and Non-Terrestrial 6G Solutions for Sustainable Maritime Networking Artificial Intelligence

The maritime industry is experiencing a technological revolution that affects shipbuilding, operation of both seagoing and inland vessels, cargo management, and working practices in harbors. This ongoing transformation is driven by the ambition to make the ecosystem more sustainable and cost-efficient. Digitalization and automation help achieve these goals by transforming shipping and cruising into a much more cost- and energy-efficient, and decarbonized industry segment. The key enablers in these processes are always-available connectivity and content delivery services, which can not only aid shipping companies in improving their operational efficiency and reducing carbon emissions but also contribute to enhanced crew welfare and passenger experience. Due to recent advancements in integrating high-capacity and ultra-reliable terrestrial and non-terrestrial networking technologies, ubiquitous maritime connectivity is becoming a reality. To cope with the increased complexity of managing these integrated systems, this article advocates the use of artificial intelligence and machine learning-based approaches to meet the service requirements and energy efficiency targets in various maritime communications scenarios.