Alexa speech normalization AI reduces errors by up to 81%

#artificialintelligence

Text normalization is a fundamental processing step in most natural language systems. In the case of Amazon's Alexa, "Book me a table at 5:00 p.m." might be transcribed by the assistant's automatic speech recognizer as "five p m" and further reformatted to "5:00PM." Then again, Alexa might convert "5:00PM" to "five thirty p m" for its text-to-speech synthesizer. So how does this work? Currently, Amazon's voice assistant relies on "thousands" of handwritten normalization rules for dates, email addresses, numbers, abbreviations, and other expressions, according to Alexa AI group applied scientist Ming Sun and Alexa Speech machine learning scientist Yuzong Liu.


Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks

arXiv.org Artificial Intelligence

Traditionally, multi-layer neural networks use dot product between the output vector of previous layer and the incoming weight vector as the input to activation function. The result of dot product is unbounded, thus increases the risk of large variance. Large variance of neuron makes the model sensitive to the change of input distribution, thus results in poor generalization, and aggravates the internal covariate shift which slows down the training. To bound dot product and decrease the variance, we propose to use cosine similarity or centered cosine similarity (Pearson Correlation Coefficient) instead of dot product in neural networks, which we call cosine normalization. We compare cosine normalization with batch, weight and layer normalization in fully-connected neural networks as well as convolutional networks on the data sets of MNIST, 20NEWS GROUP, CIFAR-10/100 and SVHN. Experiments show that cosine normalization achieves better performance than other normalization techniques.


Instance-Level Meta Normalization

arXiv.org Machine Learning

This paper presents a normalization mechanism called Instance-Level Meta Normalization (ILM~Norm) to address a learning-to-normalize problem. ILM~Norm learns to predict the normalization parameters via both the feature feed-forward and the gradient back-propagation paths. ILM~Norm provides a meta normalization mechanism and has several good properties. It can be easily plugged into existing instance-level normalization schemes such as Instance Normalization, Layer Normalization, or Group Normalization. ILM~Norm normalizes each instance individually and therefore maintains high performance even when small mini-batch is used. The experimental results show that ILM~Norm well adapts to different network architectures and tasks, and it consistently improves the performance of the original models. The code is available at url{https://github.com/Gasoonjia/ILM-Norm.


May too much batch normalization hurt learning?

#artificialintelligence

I was experimenting with some CNN models and reading research material when I realized that it could happen that using only a single batch normalization layer at the early stages of the network could be beneficial compared to using a batch normalization layer after each convolutional layer (in case of CNNs). The inspiration came from the paper Comparison of feature learning methods for human activity recognition using wearable sensors by F. Li, K. Shirahama, M. A. Nisar, L. Koping, and M. Grzegorzek. I was wondering when and why does batch normalization hurt learning? Why using a single batch normalization instead of many may result in better learning?


Four Things Everyone Should Know to Improve Batch Normalization

arXiv.org Machine Learning

A key component of most neural network architectures is the use of normalization layers, such as Batch Normalization. Despite its common use and large utility in optimizing deep architectures that are otherwise intractable, it has been challenging both to generically improve upon Batch Normalization and to understand specific circumstances that lend themselves to other enhancements. In this paper, we identify four improvements to the generic form of Batch Normalization and the circumstances under which they work, yielding performance gains across all batch sizes while requiring no additional computation during training. These contributions include proposing a method for reasoning about the current example in inference normalization statistics which fixes a training vs. inference discrepancy; recognizing and validating the powerful regularization effect of Ghost Batch Normalization for small and medium batch sizes; examining the effect of weight decay regularization on the scaling and shifting parameters γ and β; and identifying a new normalization algorithm for very small batch sizes by combining the strengths of Batch and Group Normalization.