Goto

Collaborating Authors

Deep Neural Network from Scratch in Python

#artificialintelligence

In this video we build on last week Multilayer perceptrons to allow for more flexibility in the architecture! However, we need to be careful about the layer of abstraction we put in place in order to facilitate the work of the user who want to simply fit and predict. Here we make use of the following three concept: Network, Layer and Neuron. These three components will be composed together to make a fully connected feedforward neural network neural network. For those who don't know a fully connected feedforward neural network is defined as follows (From Wikipedia): "A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from its descendant: recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network."


Deep Learning: Convolutional Neural Networks in Python

#artificialintelligence

This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This course is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST.


Advanced Topics in Deep Convolutional Neural Networks

#artificialintelligence

Throughout this article, I will discuss some of the more complex aspects of convolutional neural networks and how they related to specific tasks such as object detection and facial recognition. This article is a natural extension to my article titled: Simple Introductions to Neural Networks. I recommend looking at this before tackling the rest of this article if you are not well-versed in the idea and function of convolutional neural networks. Due to the excessive length of the original article, I have decided to leave out several topics related to object detection and facial recognition systems, as well as some of the more esoteric network architectures and practices currently being trialed in the research literature. I will likely discuss these in a future article related more specifically to the application of deep learning for computer vision.


Narodytska

AAAI Conferences

Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural Networks, using the well-developed means of Boolean satisfiability. Our main contribution is a construction that creates a representation of a binarized neural network as a Boolean formula. Our encoding is the first exact Boolean representation of a deep neural network. Using this encoding, we leverage the power of modern SAT solvers along with a proposed counterexample-guided search procedure to verify various properties of these networks. A particular focus will be on the critical property of robustness to adversarial perturbations. For this property, our experimental results demonstrate that our approach scales to medium-size deep neural networks used in image classification tasks. To the best of our knowledge, this is the first work on verifying properties of deep neural networks using an exact Boolean encoding of the network.