Killer Robots? Lost Jobs?

Slate

The recent win of AlphaGo over Lee Sedol--one of the world's highest ranked Go players--has resurfaced concerns about artificial intelligence. We have heard about A.I. stealing jobs, killer robots, algorithms that help diagnose and cure cancer, competent self-driving cars, perfect poker players, and more. It seems that for every mention of A.I. as humanity's top existential risk, there is a mention of its power to solve humanity's biggest challenges. Demis Hassabis--founder of Google DeepMind, the company behind AlphaGo--views A.I. as "potentially a meta-solution to any problem," and Eric Horvitz--director of research at Microsoft's Redmond, Washington, lab--claims that "A.I. will be incredibly empowering to humanity." By contrast, Bill Gates has called A.I. "a huge challenge" and something to "worry about," and Stephen Hawking has warned about A.I. ending humanity.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


The Moral Imperative of Artificial Intelligence

Communications of the ACM

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


The Moral Imperative of Artificial Intelligence

AITopics Original Links

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.