Collaborating Authors

OSA Deep learning microscopy


N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, "Combining satellite imagery and machine learning to predict poverty," Science 353, 790–794 (2016). B. Forster, D. Van De Ville, J. Berent, D. Sage, and M. Unser, "Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images," Microsc.

Embodied Evolution in Collective Robotics: A Review


This article provides an overview of evolutionary robotics research where evolution takes place in a population of robots in a continuous manner. Ficici et al. (1999) coined the phrase embodied evolution for evolutionary processes that are distributed over the robots in the population to allow them to adapt autonomously and continuously. As robotics technology becomes simultaneously more capable and economically viable, individual robots operated at large expense by teams of experts are increasingly supplemented by collectives of robots used cooperatively under minimal human supervision (Bellingham and Rajan, 2007), and embodied evolution can play a crucial role in enabling autonomous online adaptivity in such robot collectives.

Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities Artificial Intelligence

Autonomous Vehicles (AVs) are increasingly embraced around the world to advance smart mobility and more broadly, smart, and sustainable cities. Algorithms form the basis of decision-making in AVs, allowing them to perform driving tasks autonomously, efficiently, and more safely than human drivers and offering various economic, social, and environmental benefits. However, algorithmic decision-making in AVs can also introduce new issues that create new safety risks and perpetuate discrimination. We identify bias, ethics, and perverse incentives as key ethical issues in the AV algorithms' decision-making that can create new safety risks and discriminatory outcomes. Technical issues in the AVs' perception, decision-making and control algorithms, limitations of existing AV testing and verification methods, and cybersecurity vulnerabilities can also undermine the performance of the AV system. This article investigates the ethical and technical concerns surrounding algorithmic decision-making in AVs by exploring how driving decisions can perpetuate discrimination and create new safety risks for the public. We discuss steps taken to address these issues, highlight the existing research gaps and the need to mitigate these issues through the design of AV's algorithms and of policies and regulations to fully realise AVs' benefits for smart and sustainable cities.

Artificial Intelligence in Cardiology: Present and Future


For the purpose of this narrative review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and medicine and cardiology subspecialties. Articles were reviewed and selected for inclusion on the basis of relevance. This article highlights that the role of ML in cardiovascular medicine is rapidly emerging, and mounting evidence indicates it will power the new tools that drive the field. Among other uses, AI has been deployed to interpret echocardiograms, to automatically identify heart rhythms from an ECG, to uniquely identify an individual using the ECG as a biometric signal, and to detect the presence of heart disease such as left ventricular dysfunction from the surface ECG.6x6Attia, Z.I., Kapa, S., Lopez-Jimenez, F. et al.