Goto

Collaborating Authors

Generalized Beta Mixtures of Gaussians

Neural Information Processing Systems

In recent years, a rich variety of shrinkage priors have been proposed that have great promise in addressing massive regression problems. In general, these new priors can be expressed as scale mixtures of normals, but have more complex forms and better properties than traditional Cauchy and double exponential priors. We first propose a new class of normal scale mixtures through a novel generalized beta distribution that encompasses many interesting priors as special cases. This encompassing framework should prove useful in comparing competing priors, considering properties and revealing close connections. We then develop a class of variational Bayes approximations through the new hierarchy presented that will scale more efficiently to the types of truly massive data sets that are now encountered routinely.


Learning Networks of Heterogeneous Influence

Neural Information Processing Systems

Analyzing these transmission networks plays an important role in understanding the diffusion processes and predicting events in the future. However, the underlying transmission networks are often hidden and incomplete, and we observe only the time stamps when cascades of events happen. In this paper, we attempt to address the challenging problem of uncovering the hidden network only from the cascades. The structure discovery problem is complicated by the fact that the influence among different entities in a network are heterogeneous, which can not be described by a simple parametric model. Therefore, we propose a kernel-based method which can capture a diverse range of different types of influence without any prior assumption.


SHINE: Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction

arXiv.org Machine Learning

In online social networks people often express attitudes towards others, which forms massive sentiment links among users. Predicting the sign of sentiment links is a fundamental task in many areas such as personal advertising and public opinion analysis. Previous works mainly focus on textual sentiment classification, however, text information can only disclose the "tip of the iceberg" about users' true opinions, of which the most are unobserved but implied by other sources of information such as social relation and users' profile. To address this problem, in this paper we investigate how to predict possibly existing sentiment links in the presence of heterogeneous information. First, due to the lack of explicit sentiment links in mainstream social networks, we establish a labeled heterogeneous sentiment dataset which consists of users' sentiment relation, social relation and profile knowledge by entity-level sentiment extraction method. Then we propose a novel and flexible end-to-end Signed Heterogeneous Information Network Embedding (SHINE) framework to extract users' latent representations from heterogeneous networks and predict the sign of unobserved sentiment links. SHINE utilizes multiple deep autoencoders to map each user into a low-dimension feature space while preserving the network structure. We demonstrate the superiority of SHINE over state-of-the-art baselines on link prediction and node recommendation in two real-world datasets. The experimental results also prove the efficacy of SHINE in cold start scenario.


Deep Learning Approach on Information Diffusion in Heterogeneous Networks

arXiv.org Machine Learning

There are many real-world knowledge based networked systems with multi-type interacting entities that can be regarded as heterogeneous networks including human connections and biological evolutions. One of the main issues in such networks is to predict information diffusion such as shape, growth and size of social events and evolutions in the future. While there exist a variety of works on this topic mainly using a threshold-based approach, they suffer from the local viewpoint on the network and sensitivity to the threshold parameters. In this paper, information diffusion is considered through a latent representation learning of the heterogeneous networks to encode in a deep learning model. To this end, we propose a novel meta-path representation learning approach, Heterogeneous Deep Diffusion(HDD), to exploit meta-paths as main entities in networks. At first, the functional heterogeneous structures of the network are learned by a continuous latent representation through traversing meta-paths with the aim of global end-to-end viewpoint. Then, the well-known deep learning architectures are employed on our generated features to predict diffusion processes in the network. The proposed approach enables us to apply it on different information diffusion tasks such as topic diffusion and cascade prediction. We demonstrate the proposed approach on benchmark network datasets through the well-known evaluation measures. The experimental results show that our approach outperforms the earlier state-of-the-art methods.


ActiveHNE: Active Heterogeneous Network Embedding

arXiv.org Machine Learning

Heterogeneous network embedding (HNE) is a challenging task due to the diverse node types and/or diverse relationships between nodes. Existing HNE methods are typically unsupervised. To maximize the profit of utilizing the rare and valuable supervised information in HNEs, we develop a novel Active Heterogeneous Network Embedding (ActiveHNE) framework, which includes two components: Discriminative Heterogeneous Network Embedding (DHNE) and Active Query in Heterogeneous Networks (AQHN). In DHNE, we introduce a novel semi-supervised heterogeneous network embedding method based on graph convolutional neural network. In AQHN, we first introduce three active selection strategies based on uncertainty and representativeness, and then derive a batch selection method that assembles these strategies using a multi-armed bandit mechanism. ActiveHNE aims at improving the performance of HNE by feeding the most valuable supervision obtained by AQHN into DHNE. Experiments on public datasets demonstrate the effectiveness of ActiveHNE and its advantage on reducing the query cost.