Collaborating Authors

Surrogate-assisted distributed swarm optimisation for computationally expensive models Artificial Intelligence

Advances in parallel and distributed computing have enabled efficient implementation of the distributed swarm and evolutionary algorithms for complex and computationally expensive models. Evolutionary algorithms provide gradient-free optimisation which is beneficial for models that do not have such information available, for instance, geoscientific landscape evolution models. However, such models are so computationally expensive that even distributed swarm and evolutionary algorithms with the power of parallel computing struggle. We need to incorporate efficient strategies such as surrogate assisted optimisation that further improves their performance; however, this becomes a challenge given parallel processing and inter-process communication for implementing surrogate training and prediction. In this paper, we implement surrogate-based estimation of fitness evaluation in distributed swarm optimisation over a parallel computing architecture. Our results demonstrate very promising results for benchmark functions and geoscientific landscape evolution models. We obtain a reduction in computationally time while retaining optimisation solution accuracy through the use of surrogates in a parallel computing environment.

Swarm Intelligence Artificial Intelligence

Biologically inspired computing is an area of computer science which uses the advantageous properties of biological systems. It is the amalgamation of computational intelligence and collective intelligence. Biologically inspired mechanisms have already proved successful in achieving major advances in a wide range of problems in computing and communication systems. The consortium of bio-inspired computing are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, DNA computing and quantum computing, etc. This article gives an introduction to swarm intelligence.

Unveiling Swarm Intelligence with Network Science$-$the Metaphor Explained Artificial Intelligence

Self-organization is a natural phenomenon that emerges in systems with a large number of interacting components. Self-organized systems show robustness, scalability, and flexibility, which are essential properties when handling real-world problems. Swarm intelligence seeks to design nature-inspired algorithms with a high degree of self-organization. Yet, we do not know why swarm-based algorithms work well and neither we can compare the different approaches in the literature. The lack of a common framework capable of characterizing these several swarm-based algorithms, transcending their particularities, has led to a stream of publications inspired by different aspects of nature without much regard as to whether they are similar to already existing approaches. We address this gap by introducing a network-based framework$-$the interaction network$-$to examine computational swarm-based systems via the optics of social dynamics. We discuss the social dimension of several swarm classes and provide a case study of the Particle Swarm Optimization. The interaction network enables a better understanding of the plethora of approaches currently available by looking at them from a general perspective focusing on the structure of the social interactions.

Scope of Research on Particle Swarm Optimization Based Data Clustering Artificial Intelligence

Optimization is nothing but a mathematical technique which finds maxima or minima of any function of concern in some realistic region. Different optimization techniques are proposed which are competing for the best solution. Particle Swarm Optimization (PSO) is a new, advanced, and most powerful optimization methodology that performs empirically well on several optimization problems. It is the extensively used Swarm Intelligence (SI) inspired optimization algorithm used for finding the global optimal solution in a multifaceted search region. Data clustering is one of the challenging real world applications that invite the eminent research works in variety of fields. Applicability of different PSO variants to data clustering is studied in the literature, and the analyzed research work shows that, PSO variants give poor results for multidimensional data. This paper describes the different challenges associated with multidimensional data clustering and scope of research on optimizing the clustering problems using PSO. We also propose a strategy to use hybrid PSO variant for clustering multidimensional numerical, text and image data.

Swarm Optimization: Goodbye Gradients


These combinations of real-time biological systems can blend knowledge, exploration, and exploitation to unify intelligence and solve problems more efficiently. These simple agents interact locally, within their environment, and new behaviors emerge from the group as a whole. In the world of evolutionary alogirthms one such inspired method is particle swarm optimization (PSO). It is a swarm intelligence based computational technique that can be used to find an approximate solution to a problem by iteratively trying to search candidate solutions (called particles) with regard to a given measure of quality around a global optimum. The movements of the particles are guided by their own best known position in the search-space as well as the entire swarm's best known position.