Goto

Collaborating Authors

Big Data: Healthcare must move beyond the hype

#artificialintelligence

The hype surrounding so-called Big Data – the computational analysis of vast data sets to uncover patterns, trends and associations – is "bi-polar." That's how Leonard D'Avolio, an assistant professor at Harvard Medical School, describes all the chatter around this technology. "Either we are reading about how Big Data will cure cancer or about how it's foolish to believe Big Data will replace doctors," D'Avolio said. "I think the narrative should be in the middle, where we are talking about these technologies as tools that could be used to complement the work of not just clinicians but also healthcare administrators, operational leaders and others. Big Data is another set of technologies with pros and cons."


The Opportunities & Challenges of A.I. In Healthcare - TOPBOTS

#artificialintelligence

When we asked dozens of venture capitalists where they see the most potential for applied artificial intelligence, they unanimously agreed on healthcare. Technology has already been used to incrementally improve patient medical records, care delivery, diagnostic accuracy, and drug development, but with A.I. we could achieve exponential breakthroughs. Deep learning first caught the media's attention when a team from the lab of Geoffrey Hinton at the University of Toronto won a Merck drug discovery competition despite having no experience with molecular biology and pharmaceutical development. Recently, a multidisciplinary research team at Stanford's School of Medicine comprised of pathologists, biomedical engineers, geneticists, and computer scientists developed deep learning algorithms that diagnose lung cancer more accurately than human pathologists. The ultimate dream in healthcare is to eradicate disease entirely.


Machine learning: Changing everything but healthcare

#artificialintelligence

Machine learning has proven it can beat traditional human techniques in healthcare for some time now, yet it remains limited in use in the healthcare industry. But that may be about to change. "Machine learning is changing everything -- except maybe healthcare," MIT professor John Guttag said here at the Big Data and Healthcare Analytics Forum on Oct. 24. While machine learning drives products and services such as Google Maps, many websites' tracking of shopping habits and presenting options, banking, credit card companies and others, healthcare providers have done much less with the existing technologies. "There's lots of talk, but very little action, very little progress in healthcare," Guttag said.


Q&A: Predictive AI can help to prevent sepsis (Includes interview)

#artificialintelligence

Sepsis is a major medical issue. In the next week, an estimated 5,000 people will die from sepsis in the U.S. alone, and one third of all hospital deaths are related to sepsis (according to U.S. Centers for Disease Control and Prevention figures). These deaths are preventable, but by the time sepsis is detected, it's often already too late. One way to reduce incidences of sepsis is with the application of artificial intelligence. The staff at Sentara Healthcare are using an AI-enabled prescriptive analytic tool developed by Jvion, which identifies who is at risk of sepsis, alerts clinicians and suggests interventions tailored to each patient's needs.


The opportunities and challenges of AI in health care VentureBeat AI

#artificialintelligence

When we asked dozens of venture capitalists where they see the most potential for applied artificial intelligence, they unanimously agreed on health care. Technology has already been used to incrementally improve patient medical records, care delivery, diagnostic accuracy, and drug development, but with AI we could achieve exponential breakthroughs. Deep learning first caught the media's attention when a team from the lab of Geoffrey Hinton at the University of Toronto won a Merck drug discovery competition despite having no experience with molecular biology and pharmaceutical development. Recently, a multidisciplinary research team at Stanford's School of Medicine comprised of pathologists, biomedical engineers, geneticists, and computer scientists developed deep learning algorithms that diagnose lung cancer more accurately than human pathologists. The ultimate dream in health care is to eradicate disease entirely.