Augmenting expert detection of early coronary artery occlusion from 12 lead electrocardiograms using deep learning Artificial Intelligence

Early diagnosis of acute coronary artery occlusion based on electrocardiogram (ECG) findings is essential for prompt delivery of primary percutaneous coronary intervention. Current ST elevation (STE) criteria are specific but insensitive. Consequently, it is likely that many patients are missing out on potentially life-saving treatment. Experts combining non-specific ECG changes with STE detect ischaemia with higher sensitivity, but at the cost of specificity. We show that a deep learning model can detect ischaemia caused by acute coronary artery occlusion with a better balance of sensitivity and specificity than STE criteria, existing computerised analysers or expert cardiologists.

Divide and conquer: How Microsoft researchers used AI to master Ms. Pac-Man - Next at Microsoft


Microsoft researchers have created an artificial intelligence-based system that learned how to get the maximum score on the addictive 1980s video game Ms. Pac-Man, using a divide-and-conquer method that could have broad implications for teaching AI agents to do complex tasks that augment human capabilities. The team from Maluuba, a Canadian deep learning startup acquired by Microsoft earlier this year, used a branch of AI called reinforcement learning to play the Atari 2600 version of Ms. Pac-Man perfectly. Using that method, the team achieved the maximum score possible of 999,990. Doina Precup, an associate professor of computer science at McGill University in Montreal said that's a significant achievement among AI researchers, who have been using various videogames to test their systems but have found Ms. Pac-Man among the most difficult to crack. But Precup said she was impressed not just with what the researchers achieved but with how they achieved it.

A Theoretically Grounded Application of Dropout in Recurrent Neural Networks Machine Learning

Recurrent neural networks (RNNs) stand at the forefront of many recent developments in deep learning. Yet a major difficulty with these models is their tendency to overfit, with dropout shown to fail when applied to recurrent layers. Recent results at the intersection of Bayesian modelling and deep learning offer a Bayesian interpretation of common deep learning techniques such as dropout. This grounding of dropout in approximate Bayesian inference suggests an extension of the theoretical results, offering insights into the use of dropout with RNN models. We apply this new variational inference based dropout technique in LSTM and GRU models, assessing it on language modelling and sentiment analysis tasks. The new approach outperforms existing techniques, and to the best of our knowledge improves on the single model state-of-the-art in language modelling with the Penn Treebank (73.4 test perplexity). This extends our arsenal of variational tools in deep learning.

Click click snap: One look at patient's face, and AI can identify rare genetic diseases


WASHINGTON D.C. [USA]: According to a recent study, a new artificial intelligence technology can accurately identify rare genetic disorders using a photograph of a patient's face. Named DeepGestalt, the AI technology outperformed clinicians in identifying a range of syndromes in three trials and could add value in personalised care, CNN reported. The study was published in the journal Nature Medicine. According to the study, eight per cent of the population has disease with key genetic components and many may have recognisable facial features. The study further adds that the technology could identify, for example, Angelman syndrome, a disorder affecting the nervous system with characteristic features such as a wide mouth with widely spaced teeth etc. Speaking about it, Yaron Gurovich, the chief technology officer at FDNA and lead researcher of the study said, "It demonstrates how one can successfully apply state of the art algorithms, such as deep learning, to a challenging field where the available data is small, unbalanced in terms of available patients per condition, and where the need to support a large amount of conditions is great."

Recurrent Deterministic Policy Gradient Method for Bipedal Locomotion on Rough Terrain Challenge Artificial Intelligence

This paper presents a deep learning framework that is capable of solving partially observable locomotion tasks based on our novel Recurrent Deterministic Policy Gradient (RDPG). Three major improvements are applied in our RDPG based learning framework: asynchronized backup of interpolated temporal difference, initialisation of hidden state using past trajectory scanning, and injection of external experiences learned by other agents. The proposed learning framework was implemented to solve the Bipedal-Walker challenge in OpenAI's gym simulation environment where only partial state information is available. Our simulation study shows that the autonomous behaviors generated by the RDPG agent are highly adaptive to a variety of obstacles and enables the agent to traverse rugged terrains effectively.