Collaborating Authors

Data2Vis: Automatic Generation of Data Visualizations Using Sequence to Sequence Recurrent Neural Networks Artificial Intelligence

Rapidly creating effective visualizations using expressive grammars is challenging for users who have limited time and limited skills in statistics and data visualization. Even high-level, dedicated visualization tools often require users to manually select among data attributes, decide which transformations to apply, and specify mappings between visual encoding variables and raw or transformed attributes. In this paper we introduce Data2Vis, a neural translation model for automatically generating visualizations from given datasets. We formulate visualization generation as a sequence to sequence translation problem where data specifications are mapped to visualization specifications in a declarative language (Vega-Lite). To this end, we train a multilayered attention-based recurrent neural network (RNN) with long short-term memory (LSTM) units on a corpus of visualization specifications. Qualitative results show that our model learns the vocabulary and syntax for a valid visualization specification, appropriate transformations (count, bins, mean) and how to use common data selection patterns that occur within data visualizations. Data2Vis generates visualizations that are comparable to manually-created visualizations in a fraction of the time, with potential to learn more complex visualization strategies at scale.

Visual Interaction with Deep Learning Models through Collaborative Semantic Inference Artificial Intelligence

Automation of tasks can have critical consequences when humans lose agency over decision processes. Deep learning models are particularly susceptible since current black-box approaches lack explainable reasoning. We argue that both the visual interface and model structure of deep learning systems need to take into account interaction design. We propose a framework of collaborative semantic inference (CSI) for the co-design of interactions and models to enable visual collaboration between humans and algorithms. The approach exposes the intermediate reasoning process of models which allows semantic interactions with the visual metaphors of a problem, which means that a user can both understand and control parts of the model reasoning process. We demonstrate the feasibility of CSI with a co-designed case study of a document summarization system.

A Survey on Conversational Recommender Systems Artificial Intelligence

Recommender systems are software applications that help users to find items of interest in situations of information overload. Current research often assumes a one-shot interaction paradigm, where the users' preferences are estimated based on past observed behavior and where the presentation of a ranked list of suggestions is the main, one-directional form of user interaction. Conversational recommender systems (CRS) take a different approach and support a richer set of interactions. These interactions can, for example, help to improve the preference elicitation process or allow the user to ask questions about the recommendations and to give feedback. The interest in CRS has significantly increased in the past few years. This development is mainly due to the significant progress in the area of natural language processing, the emergence of new voice-controlled home assistants, and the increased use of chatbot technology. With this paper, we provide a detailed survey of existing approaches to conversational recommendation. We categorize these approaches in various dimensions, e.g., in terms of the supported user intents or the knowledge they use in the background. Moreover, we discuss technological approaches, review how CRS are evaluated, and finally identify a number of gaps that deserve more research in the future.

Preferences in Interactive Systems: Technical Challenges and Case Studies

AI Magazine

Interactive artificial intelligence systems employ preferences in both their reasoning and their interaction with the user. This survey considers preference handling in applications such as recommender systems, personal assistant agents, and personalized user interfaces. We survey the major questions and approaches, present illustrative examples, and give an outlook on potential benefits and challenges.

Integrating Artificial and Human Intelligence for Efficient Translation Artificial Intelligence

It has been shown that PE can not only yield productivity gains of 36% [9], but that it also increases the quality [2]. This paper discusses how human and artificial intelligence can be combined for efficient language translations, which tools already exist and which open challenges remain (see Figure 1). HARNESSING SYNERGIES BETWEEN AIS AND HUMANS Draft Proposal The PE process starts with an initial draft that is proposed by the AI and which the human uses as a basis. There are two main sources for this proposal: a machine translation (MT) and a translation memory (TM). Simply put, TMs are large databases containing already completed human translations which are matched (using fuzzy or exact matches) against the sentence to be translated to provide a starting point for PE.