Goto

Collaborating Authors

Deep Dive into Computer Vision with Neural Networks – Part 2

#artificialintelligence

Machine vision, or computer vision, is a popular research topic in artificial intelligence (AI) that has been around for many years. However, machine vision still remains as one of the biggest challenges in AI. In this article, we will explore the use of deep neural networks to address some of the fundamental challenges of computer vision. In particular, we will be looking at applications such as network compression, fine-grained image classification, captioning, texture synthesis, image search, and object tracking. Texture synthesis is used to generate a larger image containing the same texture.


Deep Dive Into Computer Vision With Neural Networks: Part 1 - DZone AI

#artificialintelligence

Machine vision, or computer vision, is a popular research topic in artificial intelligence (AI) that has been around for many years. However, machine vision still remains as one of the biggest challenges in AI. In this article, we will explore the use of deep neural networks to address some of the fundamental challenges of computer vision. In particular, we will be looking at applications such as network compression, fine-grained image classification, captioning, texture synthesis, image search, and object tracking. Even though deep neural networks feature incredible performance, their demands for computing power and storage pose a significant challenge to their deployment in actual application.


18 Open-Source Computer Vision Projects

#artificialintelligence

Computer vision applications are ubiquitous right now. I honestly can't remember the last time I went through an entire day without encountering or interacting with at least one computer vision use case (hello facial recognition on my phone!). But here's the thing – people who want to learn computer vision tend to get stuck in the theoretical concepts. And that's the worst path you can take! To truly learn and master computer vision, we need to combine theory with practiceal experience. And that's where open source computer vision projects come in.


Quality Guided Sketch-to-Photo Image Synthesis

arXiv.org Machine Learning

Facial sketches drawn by artists are widely used for visual identification applications and mostly by law enforcement agencies, but the quality of these sketches depend on the ability of the artist to clearly replicate all the key facial features that could aid in capturing the true identity of a subject. Recent works have attempted to synthesize these sketches into plausible visual images to improve visual recognition and identification. However, synthesizing photo-realistic images from sketches proves to be an even more challenging task, especially for sensitive applications such as suspect identification. In this work, we propose a novel approach that adopts a generative adversarial network that synthesizes a single sketch into multiple synthetic images with unique attributes like hair color, sex, etc. We incorporate a hybrid discriminator which performs attribute classification of multiple target attributes, a quality guided encoder that minimizes the perceptual dissimilarity of the latent space embedding of the synthesized and real image at different layers in the network and an identity preserving network that maintains the identity of the synthesised image throughout the training process. Our approach is aimed at improving the visual appeal of the synthesised images while incorporating multiple attribute assignment to the generator without compromising the identity of the synthesised image. We synthesised sketches using XDOG filter for the CelebA, WVU Multi-modal and CelebA-HQ datasets and from an auxiliary generator trained on sketches from CUHK, IIT-D and FERET datasets. Our results are impressive compared to current state of the art.


Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks

Neural Information Processing Systems

Real-world image recognition is often challenged by the variability of visual styles including object textures, lighting conditions, filter effects, etc. Although these variations have been deemed to be implicitly handled by more training data and deeper networks, recent advances in image style transfer suggest that it is also possible to explicitly manipulate the style information. Extending this idea to general visual recognition problems, we present Batch-Instance Normalization (BIN) to explicitly normalize unnecessary styles from images. Considering certain style features play an essential role in discriminative tasks, BIN learns to selectively normalize only disturbing styles while preserving useful styles. The proposed normalization module is easily incorporated into existing network architectures such as Residual Networks, and surprisingly improves the recognition performance in various scenarios. Furthermore, experiments verify that BIN effectively adapts to completely different tasks like object classification and style transfer, by controlling the trade-off between preserving and removing style variations. BIN can be implemented with only a few lines of code using popular deep learning frameworks.