Collaborating Authors

Tackling Climate Change with Machine Learning Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

New Hybrid Neuro-Evolutionary Algorithms for Renewable Energy and Facilities Management Problems Machine Learning

This Ph.D. thesis deals with the optimization of several renewable energy resources development as well as the improvement of facilities management in oceanic engineering and airports, using computational hybrid methods belonging to AI to this end. Energy is essential to our society in order to ensure a good quality of life. This means that predictions over the characteristics on which renewable energies depend are necessary, in order to know the amount of energy that will be obtained at any time. The second topic tackled in this thesis is related to the basic parameters that influence in different marine activities and airports, whose knowledge is necessary to develop a proper facilities management in these environments. Within this work, a study of the state-of-the-art Machine Learning have been performed to solve the problems associated with the topics above-mentioned, and several contributions have been proposed: One of the pillars of this work is focused on the estimation of the most important parameters in the exploitation of renewable resources. The second contribution of this thesis is related to feature selection problems. The proposed methodologies are applied to multiple problems: the prediction of $H_s$, relevant for marine energy applications and marine activities, the estimation of WPREs, undesirable variations in the electric power produced by a wind farm, the prediction of global solar radiation in areas from Spain and Australia, really important in terms of solar energy, and the prediction of low-visibility events at airports. All of these practical issues are developed with the consequent previous data analysis, normally, in terms of meteorological variables.

Multi-agent Reinforcement Learning Embedded Game for the Optimization of Building Energy Control and Power System Planning Machine Learning

Most of the current game-theoretic demand-side management methods focus primarily on the scheduling of home appliances, and the related numerical experiments are analyzed under various scenarios to achieve the corresponding Nash-equilibrium (NE) and optimal results. However, not much work is conducted for academic or commercial buildings. The methods for optimizing academic-buildings are distinct from the optimal methods for home appliances. In my study, we address a novel methodology to control the operation of heating, ventilation, and air conditioning system (HVAC). With the development of Artificial Intelligence and computer technologies, reinforcement learning (RL) can be implemented in multiple realistic scenarios and help people to solve thousands of real-world problems. Reinforcement Learning, which is considered as the art of future AI, builds the bridge between agents and environments through Markov Decision Chain or Neural Network and has seldom been used in power system. The art of RL is that once the simulator for a specific environment is built, the algorithm can keep learning from the environment. Therefore, RL is capable of dealing with constantly changing simulator inputs such as power demand, the condition of power system and outdoor temperature, etc. Compared with the existing distribution power system planning mechanisms and the related game theoretical methodologies, our proposed algorithm can plan and optimize the hourly energy usage, and have the ability to corporate with even shorter time window if needed.

Distributed Constraint Optimization Problems and Applications: A Survey

Journal of Artificial Intelligence Research

The field of multi-agent system (MAS) is an active area of research within artificial intelligence, with an increasingly important impact in industrial and other real-world applications. In a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as a prominent agent model to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have been proposed to enable support of MAS in complex, real-time, and uncertain environments. This survey provides an overview of the DCOP model, offering a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.