Collaborating Authors

Generative Adversarial Networks Applied to Observational Health Data Machine Learning

Having been collected for its primary purpose in patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics. However, the potential for secondary usage of OHD continues to be hampered by the fiercely private nature of patient-related data. Generative Adversarial Networks (GAN) have Generative Adversarial Networks (GAN) have recently emerged as a groundbreaking approach to efficiently learn generative models that produce realistic Synthetic Data (SD). However, the application of GAN to OHD seems to have been lagging in comparison to other fields. We conducted a review of GAN algorithms for OHD in the published literature, and report our findings here.

Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy Artificial Intelligence

Precision health leverages information from various sources, including omics, lifestyle, environment, social media, medical records, and medical insurance claims to enable personalized care, prevent and predict illness, and precise treatments. It extensively uses sensing technologies (e.g., electronic health monitoring devices), computations (e.g., machine learning), and communication (e.g., interaction between the health data centers). As health data contain sensitive private information, including the identity of patient and carer and medical conditions of the patient, proper care is required at all times. Leakage of these private information affects the personal life, including bullying, high insurance premium, and loss of job due to the medical history. Thus, the security, privacy of and trust on the information are of utmost importance. Moreover, government legislation and ethics committees demand the security and privacy of healthcare data. Herein, in the light of precision health data security, privacy, ethical and regulatory requirements, finding the best methods and techniques for the utilization of the health data, and thus precision health is essential. In this regard, firstly, this paper explores the regulations, ethical guidelines around the world, and domain-specific needs. Then it presents the requirements and investigates the associated challenges. Secondly, this paper investigates secure and privacy-preserving machine learning methods suitable for the computation of precision health data along with their usage in relevant health projects. Finally, it illustrates the best available techniques for precision health data security and privacy with a conceptual system model that enables compliance, ethics clearance, consent management, medical innovations, and developments in the health domain.

Patient Similarity Analysis with Longitudinal Health Data Machine Learning

Healthcare professionals have long envisioned using the enormous processing powers of computers to discover new facts and medical knowledge locked inside electronic health records. These vast medical archives contain time-resolved information about medical visits, tests and procedures, as well as outcomes, which together form individual patient journeys. By assessing the similarities among these journeys, it is possible to uncover clusters of common disease trajectories with shared health outcomes. The assignment of patient journeys to specific clusters may in turn serve as the basis for personalized outcome prediction and treatment selection. This procedure is a non-trivial computational problem, as it requires the comparison of patient data with multi-dimensional and multi-modal features that are captured at different times and resolutions. In this review, we provide a comprehensive overview of the tools and methods that are used in patient similarity analysis with longitudinal data and discuss its potential for improving clinical decision making.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

DeepHealth: Deep Learning for Health Informatics Machine Learning

Machine learning and deep learning have provided us with an exploration of a whole new research era. As more data and better computational power become available, they have been implemented in various fields. The demand for artificial intelligence in the field of health informatics is also increasing and we can expect to see the potential benefits of artificial intelligence applications in healthcare. Deep learning can help clinicians diagnose disease, identify cancer sites, identify drug effects for each patient, understand the relationship between genotypes and phenotypes, explore new phenotypes, and predict infectious disease outbreaks with high accuracy. In contrast to traditional models, its approach does not require domain-specific data pre-process, and it is expected that it will ultimately change human life a lot in the future. Despite its notable advantages, there are some challenges on data (high dimensionality, heterogeneity, time dependency, sparsity, irregularity, lack of label) and model (reliability, interpretability, feasibility, security, scalability) for practical use. This article presents a comprehensive review of research applying deep learning in health informatics with a focus on the last five years in the fields of medical imaging, electronic health records, genomics, sensing, and online communication health, as well as challenges and promising directions for future research. We highlight ongoing popular approaches' research and identify several challenges in building deep learning models.