Goto

Collaborating Authors

Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


DeepHealth: Deep Learning for Health Informatics

arXiv.org Machine Learning

Machine learning and deep learning have provided us with an exploration of a whole new research era. As more data and better computational power become available, they have been implemented in various fields. The demand for artificial intelligence in the field of health informatics is also increasing and we can expect to see the potential benefits of artificial intelligence applications in healthcare. Deep learning can help clinicians diagnose disease, identify cancer sites, identify drug effects for each patient, understand the relationship between genotypes and phenotypes, explore new phenotypes, and predict infectious disease outbreaks with high accuracy. In contrast to traditional models, its approach does not require domain-specific data pre-process, and it is expected that it will ultimately change human life a lot in the future. Despite its notable advantages, there are some challenges on data (high dimensionality, heterogeneity, time dependency, sparsity, irregularity, lack of label) and model (reliability, interpretability, feasibility, security, scalability) for practical use. This article presents a comprehensive review of research applying deep learning in health informatics with a focus on the last five years in the fields of medical imaging, electronic health records, genomics, sensing, and online communication health, as well as challenges and promising directions for future research. We highlight ongoing popular approaches' research and identify several challenges in building deep learning models.


Conversational AI and the Rise of Chatbots Disrupt Search

#artificialintelligence

Indeed, voice search is disrupting the world of text-based searches, but it is only part of the larger shift on how businesses need to think about communications with current clients and new consumers who have the potential of becoming a client. Conversational AI represents an easy way to get immediate answers and is shifting consumer behavior; voice search is a key player in the bigger picture of getting solutions fast but is only one part of it. The AI-based technology of natural language processing that enables voice search is pretty astounding, but in truth, Google doesn't understand natural language processing yet. The race is on with many participants who are trying to. Answer engine optimization (AEO) is a means in which SEO's are engaging with search engines to get their answer matched to a searcher's query. Search engine marketers can take advantage of AEO and conversational AI can help your business transition into the realm that fits trends in how users gain information. Conversational commerce is e-commerce conducted through various means of conversation. They may take the form of a live chat on e-commerce sites, a live conversation on messaging apps, through chatbots directly on websites, or via voice assistants.


Targeted Estimation of Heterogeneous Treatment Effect in Observational Survival Analysis

arXiv.org Machine Learning

The aim of clinical effectiveness research using repositories of electronic health records is to identify what health interventions 'work best' in real-world settings. Since there are several reasons why the net benefit of intervention may differ across patients, current comparative effectiveness literature focuses on investigating heterogeneous treatment effect and predicting whether an individual might benefit from an intervention. The majority of this literature has concentrated on the estimation of the effect of treatment on binary outcomes. However, many medical interventions are evaluated in terms of their effect on future events, which are subject to loss to follow-up. In this study, we describe a framework for the estimation of heterogeneous treatment effect in terms of differences in time-to-event (survival) probabilities. We divide the problem into three phases: (1) estimation of treatment effect conditioned on unique sets of the covariate vector; (2) identification of features important for heterogeneity using an ensemble of non-parametric variable importance methods; and (3) estimation of treatment effect on the reference classes defined by the previously selected features, using one-step Targeted Maximum Likelihood Estimation. We conducted a series of simulation studies and found that this method performs well when either sample size or event rate is high enough and the number of covariates contributing to the effect heterogeneity is moderate. An application of this method to a clinical case study was conducted by estimating the effect of oral anticoagulants on newly diagnosed non-valvular atrial fibrillation patients using data from the UK Clinical Practice Research Datalink.


HeteroMed: Heterogeneous Information Network for Medical Diagnosis

arXiv.org Artificial Intelligence

With the recent availability of Electronic Health Records (EHR) and great opportunities they offer for advancing medical informatics, there has been growing interest in mining EHR for improving quality of care. Disease diagnosis due to its sensitive nature, huge costs of error, and complexity has become an increasingly important focus of research in past years. Existing studies model EHR by capturing co-occurrence of clinical events to learn their latent embeddings. However, relations among clinical events carry various semantics and contribute differently to disease diagnosis which gives precedence to a more advanced modeling of heterogeneous data types and relations in EHR data than existing solutions. To address these issues, we represent how high-dimensional EHR data and its rich relationships can be suitably translated into HeteroMed, a heterogeneous information network for robust medical diagnosis. Our modeling approach allows for straightforward handling of missing values and heterogeneity of data. HeteroMed exploits metapaths to capture higher level and semantically important relations contributing to disease diagnosis. Furthermore, it employs a joint embedding framework to tailor clinical event representations to the disease diagnosis goal. To the best of our knowledge, this is the first study to use Heterogeneous Information Network for modeling clinical data and disease diagnosis. Experimental results of our study show superior performance of HeteroMed compared to prior methods in prediction of exact diagnosis codes and general disease cohorts. Moreover, HeteroMed outperforms baseline models in capturing similarities of clinical events which are examined qualitatively through case studies.