to

### Advanced Linear Models for Data Science 2: Statistical Linear Models Coursera

Welcome to the Advanced Linear Models for Data Science Class 2: Statistical Linear Models. This class is an introduction to least squares from a linear algebraic and mathematical perspective. Before beginning the class make sure that you have the following: - A basic understanding of linear algebra and multivariate calculus. After taking this course, students will have a firm foundation in a linear algebraic treatment of regression modeling. This will greatly augment applied data scientists' general understanding of regression models.

### Regression Models Coursera

About this course: Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist's toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated.

### Probabilistic Graphical Models 3: Learning Coursera

About this course: Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the third in a sequence of three.

### ModelDiff: Testing-Based DNN Similarity Comparison for Model Reuse Detection

The knowledge of a deep learning model may be transferred to a student model, leading to intellectual property infringement or vulnerability propagation. Detecting such knowledge reuse is nontrivial because the suspect models may not be white-box accessible and/or may serve different tasks. In this paper, we propose ModelDiff, a testing-based approach to deep learning model similarity comparison. Instead of directly comparing the weights, activations, or outputs of two models, we compare their behavioral patterns on the same set of test inputs. Specifically, the behavioral pattern of a model is represented as a decision distance vector (DDV), in which each element is the distance between the model's reactions to a pair of inputs. The knowledge similarity between two models is measured with the cosine similarity between their DDVs. To evaluate ModelDiff, we created a benchmark that contains 144 pairs of models that cover most popular model reuse methods, including transfer learning, model compression, and model stealing. Our method achieved 91.7% correctness on the benchmark, which demonstrates the effectiveness of using ModelDiff for model reuse detection. A study on mobile deep learning apps has shown the feasibility of ModelDiff on real-world models.

### Machine Learning & Deep Learning in Python & R

In this section we will learn - What does Machine Learning mean. What are the meanings or different terms associated with machine learning? You will see some examples so that you understand what machine learning actually is. It also contains steps involved in building a machine learning model, not just linear models, any machine learning model.