Goto

Collaborating Authors

Prime Classes Artificial intelligence Machine learning

#artificialintelligence

Artificial intelligence and machine learning are two of the most popular buzzwords in the market and many times are used interchangeably. They have become a part of everyday life, but that does not mean we understand them well. Lot of confusion exists between what is machine learning and what is AI. in most companies; marketing overlooks this distinction for advertising and sales. As technology, and, importantly, our understanding of how our minds work, has progressed, our concept of what constitutes AI has changed. Rather than increasingly complex calculations, work in the field of AI concentrated on mimicking human decision making processes and carrying out tasks in ever more human ways.




Improved Use of Continuous Attributes in C4.5

Journal of Artificial Intelligence Research

A reported weakness of C4.5 in domains with continuous attributes is addressed by modifying the formation and evaluation of tests on continuous attributes. An MDL-inspired penalty is applied to such tests, eliminating some of them from consideration and altering the relative desirability of all tests. Empirical trials show that the modifications lead to smaller decision trees with higher predictive accuracies. Results also confirm that a new version of C4.5 incorporating these changes is superior to recent approaches that use global discretization and that construct small trees with multi-interval splits.


Bolukbasi

AAAI Conferences

We study the problem of structured prediction under test-time budget constraints. We propose a novel approach based on selectively acquiring computationally costly features during test-time in order to reduce the computational cost of pre- diction with minimal performance degradation. We formulate a novel empirical risk minimization (ERM) for policy learning. We show that policy learning can be reduced to a series of structured learning problems, resulting in efficient training using existing structured learning algorithms. This framework provides theoretical justification for several existing heuristic approaches found in literature. We evaluate our proposed adaptive system on two structured prediction tasks, optical character recognition and dependency parsing and show significant reduction in the feature costs without degrading accuracy.