Goto

Collaborating Authors


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Computers and Thought

Classics

E.A. Feigenbaum and J. Feldman (Eds.). Computers and Thought. McGraw-Hill, 1963. This collection includes twenty classic papers by such pioneers as A. M. Turing and Marvin Minsky who were behind the pivotal advances in artificially simulating human thought processes with computers. All Parts are available as downloadable pdf files; most individual chapters are also available separately. COMPUTING MACHINERY AND INTELLIGENCE. A. M. Turing. CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY. Allen Newell, J.C. Shaw and H.A. Simon. SOME STUDIES IN MACHINE LEARNING USING THE GAME OF CHECKERS. A. L. Samuel. EMPIRICAL EXPLORATIONS WITH THE LOGIC THEORY MACHINE: A CASE STUDY IN HEURISTICS. Allen Newell J.C. Shaw and H.A. Simon. REALIZATION OF A GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter. EMPIRICAL EXPLORATIONS OF THE GEOMETRY-THEOREM PROVING MACHINE. H. Gelernter, J.R. Hansen, and D. W. Loveland. SUMMARY OF A HEURISTIC LINE BALANCING PROCEDURE. Fred M. Tonge. A HEURISTIC PROGRAM THAT SOLVES SYMBOLIC INTEGRATION PROBLEMS IN FRESHMAN CALCULUS. James R. Slagle. BASEBALL: AN AUTOMATIC QUESTION ANSWERER. Green, Bert F. Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. INFERENTIAL MEMORY AS THE BASIS OF MACHINES WHICH UNDERSTAND NATURAL LANGUAGE. Robert K. Lindsay. PATTERN RECOGNITION BY MACHINE. Oliver G. Selfridge and Ulric Neisser. A PATTERN-RECOGNITION PROGRAM THAT GENERATES, EVALUATES, AND ADJUSTS ITS OWN OPERATORS. Leonard Uhr and Charles Vossler. GPS, A PROGRAM THAT SIMULATES HUMAN THOUGHT. Allen Newell and H.A. Simon. THE SIMULATION OF VERBAL LEARNING BEHAVIOR. Edward A. Feigenbaum. PROGRAMMING A MODEL OF HUMAN CONCEPT FORMULATION. Earl B. Hunt and Carl I. Hovland. SIMULATION OF BEHAVIOR IN THE BINARY CHOICE EXPERIMENT Julian Feldman. A MODEL OF THE TRUST INVESTMENT PROCESS. Geoffrey P. E. Clarkson. A COMPUTER MODEL OF ELEMENTARY SOCIAL BEHAVIOR. John T. Gullahorn and Jeanne E. Gullahorn. TOWARD INTELLIGENT MACHINES. Paul Armer. STEPS TOWARD ARTIFICIAL INTELLIGENCE. Marvin Minsky. A SELECTED DESCRIPTOR-INDEXED BIBLIOGRAPHY TO THE LITERATURE ON ARTIFICIAL INTELLIGENCE. Marvin Minsky.



Understanding artificial intelligence ethics and safety

arXiv.org Artificial Intelligence

A remarkable time of human promise has been ushered in by the convergence of the ever-expanding availability of big data, the soaring speed and stretch of cloud computing platforms, and the advancement of increasingly sophisticated machine learning algorithms. Innovations in AI are already leaving a mark on government by improving the provision of essential social goods and services from healthcare, education, and transportation to food supply, energy, and environmental management. These bounties are likely just the start. The prospect that progress in AI will help government to confront some of its most urgent challenges is exciting, but legitimate worries abound. As with any new and rapidly evolving technology, a steep learning curve means that mistakes and miscalculations will be made and that both unanticipated and harmful impacts will occur. This guide, written for department and delivery leads in the UK public sector and adopted by the British Government in its publication, 'Using AI in the Public Sector,' identifies the potential harms caused by AI systems and proposes concrete, operationalisable measures to counteract them. It stresses that public sector organisations can anticipate and prevent these potential harms by stewarding a culture of responsible innovation and by putting in place governance processes that support the design and implementation of ethical, fair, and safe AI systems. It also highlights the need for algorithmically supported outcomes to be interpretable by their users and made understandable to decision subjects in clear, non-technical, and accessible ways. Finally, it builds out a vision of human-centred and context-sensitive implementation that gives a central role to communication, evidence-based reasoning, situational awareness, and moral justifiability.