Online Data Science Course : Data Science Certification Course

#artificialintelligence

Data Science has become the new desirable IT job. While there are only few in the market conversant with the terms like python, machine learning, deep learning and transflow, it is also a fact that these skills are high in demand. Acadgild will transform you into a Data Scientist by delivering hands-on experience in Statistics, Machine Learning, Deep Learning and Artificial Intelligence (AI) using Python, TensorFlow, Apache Spark, R and Tableau. The course provides in-depth understanding of Machine Learning and Deep Learning algorithms such as Linear Regression, Logistic Regression, Naive Bayes Classifiers, Decision Tree and Random Forest, Support Vector Machine, Artificial Neural Networks and more. This 24 weeks long Data Science course has several advantages like 400 total coding hours and experienced industry mentors.


Deep Learning: Recurrent Neural Networks in Python

#artificialintelligence

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.


Deep Learning: Recurrent Neural Networks in Python

@machinelearnbot

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.


Extending Machine Learning Algorithms Udemy

@machinelearnbot

Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. Understand the real-world examples that discuss the statistical side of Machine Learning and familiarize yourself with it. We will use libraries such as scikit-learn, e1071, randomForest, c50, xgboost, and so on.We will discuss the application of frequently used algorithms on various domain problems, using both Python and R programming.It focuses on the various tree-based machine learning models used by industry practitioners.We will also discuss k-nearest neighbors, Naive Bayes, Support Vector Machine and recommendation engine.By the end of the course, you will have mastered the required statistics for Machine Learning Algorithm and will be able to apply your new skills to any sort of industry problem. Pratap Dangeti develops machine learning and deep learning solutions for structured, image, and text data at TCS, in its research and innovation lab in Bangalore.


Deep Learning: Recurrent Neural Networks in Python

@machinelearnbot

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.