Goto

Collaborating Authors

Machine learning helps grow artificial organs

#artificialintelligence

IMAGE: Researchers from the Moscow Institute of Physics and Technology, Ivannikov Institute for System Programming, and the Harvard Medical School-affiliated Schepens Eye Research Institute have developed a neural network capable of... view more Researchers from the Moscow Institute of Physics and Technology, Ivannikov Institute for System Programming, and the Harvard Medical School-affiliated Schepens Eye Research Institute have developed a neural network capable of recognizing retinal tissues during the process of their differentiation in a dish. Unlike humans, the algorithm achieves this without the need to modify cells, making the method suitable for growing retinal tissue for developing cell replacement therapies to treat blindness and conducting research into new drugs. In multicellular organisms, the cells making up different organs and tissues are not the same. They have distinct functions and properties, acquired in the course of development. They start out the same, as so-called stem cells, which have the potential to become any kind of cell the mature organism incorporates.


Machine learning helps grow artificial organs – Tech Check News

#artificialintelligence

Credit: CC0 Public Domain Researchers from the Moscow Institute of Physics and Technology, Ivannikov Institute for System Programming, and the Harvard Medical School-affiliated Schepens Eye Research Institute have developed a neural network capable of recognizing retinal tissues during the process of their differentiation in a dish. Unlike humans, the algorithm achieves this without the need to modify cells, making the method suitable for growing retinal tissue for developing cell replacement therapies to treat blindness and conducting research into new drugs.


Machine learning helps grow artificial organs

#artificialintelligence

This would allow to expand the applications of the technology for multiple fields including the drug discovery and development of cell replacement therapies to treat blindness. In multicellular organisms, the cells making up different organs and tissues are not the same. They have distinct functions and properties, acquired in the course of development. They start out the same, as so-called stem cells, which have the potential to become any kind of cell the mature organism incorporates. They then undergo differentiation by producing proteins specific to certain tissues and organs. The most advanced technique for replicating tissue differentiation in vitro relies on 3D cell aggregates called organoids.


NIH, NIST researchers use artificial intelligence for quality control of stem cell-derived tissues

#artificialintelligence

Technique key to scale up manufacturing of therapies from induced pluripotent stem cells. Researchers used artificial intelligence (AI) to evaluate stem cell-derived "patches" of retinal pigment epithelium (RPE) tissue for implanting into the eyes of patients with age-related macular degeneration (AMD), a leading cause of blindness. The proof-of-principle study helps pave the way for AI-based quality control of therapeutic cells and tissues. The method was developed by researchers at the National Eye Institute (NEI) and the National Institute of Standards and Technology (NIST) and is described in a report appearing online today in the Journal of Clinical Investigation. NEI is part of the National Institutes of Health.


Restoring vision to the blind

Science

Surveys consistently report that people fear total blindness more than any other disability, and currently the major cause of untreatable blindness is retinal disease. The retina, a part of the brain that extends into the eye during development, initiates vision by first detecting light with the rod and cone photoreceptors. Four classes of retinal neurons then begin the analysis of visual images. Defects in the optical media that transmit and focus light rays onto the retina (lens and cornea) can usually be dealt with surgically, although such treatments are not available in some parts of the world, resulting in as many as 20 to 30 million legally blind individuals worldwide. Untreatable retinal disease potentially causes legal or total blindness in more than 11 million people in the United States alone, but progress in treatments raises the possibility of restoring vision in several types of retinal blindness (1).