Goto

Collaborating Authors


Ultimate Guide to Understand & Implement Natural Language Processing

@machinelearnbot

According to industry estimates, only 21% of the available data is present in structured form. Data is being generated as we speak, as we tweet, as we send messages on Whatsapp and in various other activities. Majority of this data exists in the textual form, which is highly unstructured in nature. Few notorious examples include – tweets / posts on social media, user to user chat conversations, news, blogs and articles, product or services reviews and patient records in the healthcare sector. A few more recent ones includes chatbots and other voice driven bots. Despite having high dimension data, the information present in it is not directly accessible unless it is processed (read and understood) manually or analyzed by an automated system.


A survey on natural language processing (nlp) and applications in insurance

arXiv.org Machine Learning

Text is the most widely used means of communication today. This data is abundant but nevertheless complex to exploit within algorithms. For years, scientists have been trying to implement different techniques that enable computers to replicate some mechanisms of human reading. During the past five years, research disrupted the capacity of the algorithms to unleash the value of text data. It brings today, many opportunities for the insurance industry.Understanding those methods and, above all, knowing how to apply them is a major challenge and key to unleash the value of text data that have been stored for many years. Processing language with computer brings many new opportunities especially in the insurance sector where reports are central in the information used by insurers. SCOR's Data Analytics team has been working on the implementation of innovative tools or products that enable the use of the latest research on text analysis. Understanding text mining techniques in insurance enhances the monitoring of the underwritten risks and many processes that finally benefit policyholders.This article proposes to explain opportunities that Natural Language Processing (NLP) are providing to insurance. It details different methods used today in practice traces back the story of them. We also illustrate the implementation of certain methods using open source libraries and python codes that we have developed to facilitate the use of these techniques.After giving a general overview on the evolution of text mining during the past few years,we share about how to conduct a full study with text mining and share some examples to serve those models into insurance products or services. Finally, we explained in more details every step that composes a Natural Language Processing study to ensure the reader can have a deep understanding on the implementation.


Deep learning nlp python github

#artificialintelligence

This course is not part of my deep learning series, so it doesn't contain any hard math - just straight up coding in Python. This course is not part of my deep learning series, so there are no mathematical prerequisites - just straight up coding in Python. You'll start by preparing your environment for NLP and then quickly learn about language structure and how we can break sentences down to extract information and uncover the underlying meaning.