A high-bias, low-variance introduction to Machine Learning for physicists

arXiv.org Machine Learning

Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introduction to the core concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, and generalization before moving on to more advanced topics in both supervised and unsupervised learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical physics. A notable aspect of the review is the use of Python notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton-proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furthering our understanding of the physical world as well as open problems in ML where physicists maybe able to contribute. (Notebooks are available at https://physics.bu.edu/~pankajm/MLnotebooks.html )


Top Machine learning Books

#artificialintelligence

Machine learning is to learn from data repetitively and to find the pattern hidden there. By applying the results of learning to new data, in other word Machine learning allows computers to analyze past data and predict future data. Machine learning is widely used in familiar places such as product recommendation system and face detection of photos. Also, as cloud machine learning services such as Microsoft's "Azure Machine Learning", Amazon's "Amazon Machine Learning", and Google's "Cloud Machine Learning" are released. This article is written to help novices and experts alike find the best Machine learning books to start with or continue their education. So here is a list of the best Machine learning Books: Book Name: Machine Learning This textbook provides a single source introduction to the primary approaches to machine learning Good content explained in very simple language. The book covers the concepts and techniques from the various fields in a unified fashion and very recent subjects such as genetic algorithms, re-enforcement learning and inductive logic programming. Writing style is clear, explanatory and precise.


DynaLearn – An Intelligent Learning Environment for Learning Conceptual Knowledge

AI Magazine

Articulating thought in computer-based media is a powerful means for humans to develop their understanding of phenomena. We have created DynaLearn, an Intelligent Learning Environment that allows learners to acquire conceptual knowledge by constructing and simulating qualitative models of how systems behave. DynaLearn uses diagrammatic representations for learners to express their ideas. The environment is equipped with semantic technology components capable of generating knowledge-based feedback, and virtual characters enhancing the interaction with learners. Teachers have created course material, and successful evaluation studies have been performed. This article presents an overview of the DynaLearn system.


From Insights to Interventions: Informed Design of Discussion Affordances for Natural Collaborative Exchange

AAAI Conferences

Despite studies showing collaboration to be beneficial both in terms of student satisfaction and learning, isolation is the norm in MOOCs. Two problems limiting the success of collaboration in MOOCs are the lack of support for team formation and structured collaboration support. Lack of support and strategies for team formation prevents teams from being set up for success from the beginning. Lack of structured support during synchronous collaboration has been demonstrated to produce significantly less learning than supported collaboration. This paper describes a deliberation based team formation approach and a scripted collaboration framework for MOOCs aimed at addressing these problems under the umbrella of Discussion Affordances for Natural Collaborative Exchange (DANCE) whose overarching focus is the enhancement of team-based MOOCs. These two examples of current work have been used as illustrations of insights informing interventions in MOOCs.


Machine Learning

AITopics Original Links

The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.