Click click snap: One look at patient's face, and AI can identify rare genetic diseases

#artificialintelligence

WASHINGTON D.C. [USA]: According to a recent study, a new artificial intelligence technology can accurately identify rare genetic disorders using a photograph of a patient's face. Named DeepGestalt, the AI technology outperformed clinicians in identifying a range of syndromes in three trials and could add value in personalised care, CNN reported. The study was published in the journal Nature Medicine. According to the study, eight per cent of the population has disease with key genetic components and many may have recognisable facial features. The study further adds that the technology could identify, for example, Angelman syndrome, a disorder affecting the nervous system with characteristic features such as a wide mouth with widely spaced teeth etc. Speaking about it, Yaron Gurovich, the chief technology officer at FDNA and lead researcher of the study said, "It demonstrates how one can successfully apply state of the art algorithms, such as deep learning, to a challenging field where the available data is small, unbalanced in terms of available patients per condition, and where the need to support a large amount of conditions is great."


AI Screening for Diabetic Retinopathy Moves to Retail Clinics

#artificialintelligence

Retail health clinics have been part of the trend in making healthcare more convenient, and now another option is being offered -- testing for diabetic retinopathy. However, an ophthalmologist won't make the diagnosis at the clinic; instead, it will be made by an artificial intelligence (AI) system called IDx-DR. Testing will be offered through CarePortMD, the first retail health clinic to adopt this type of AI diagnostic technology, and offered at clinics inside Albertsons grocery stores. The second largest grocery chain in the United States, Albertsons added five CarePortMD clinics to stores in Delaware and Pennsylvania this past year. "Ours is a hybrid model of telehealth plus the convenience and access of a retail clinic, with the scalability and opportunity to coordinate with telemedicine." said Ashok Subramanian, MD, the CEO of CarePortMD.


Artificial Intelligence Effectively Assesses Cell Therapy Functionality

#artificialintelligence

A fully automated artificial intelligence (AI)-based multispectral absorbance imaging system effectively classified function and potency of induced pluripotent stem cell derived retinal pigment epithelial cells (iPSC-RPE) from patients with age-related macular degeneration (AMD). The finding from the system could be applied to assessing future cellular therapies, according to research presented at the 2018 ARVO annual meeting. The software, which uses convolutional neural network (CNN) deep learning algorithms, effectively evaluated release criterion for the iPSC-RPE cell-based therapy in a standard, reproducible, and cost-effective fashion. The AI-based analysis was as specific and sensitive as traditional molecular and physiological assays, without the need for human intervention. "Cells can be classified with high accuracy using nothing but absorbance images," wrote lead investigator Nathan Hotaling and colleagues from the National Institutes of Health in their poster.


Exploring difference in public perceptions on HPV vaccine between gender groups from Twitter using deep learning

arXiv.org Machine Learning

In this study, we proposed a convolutional neural network model for gender prediction using English Twitter text as input. Ensemble of proposed model achieved an accuracy at 0.8237 on gender prediction and compared favorably with the state-of-the-art performance in a recent author profiling task. We further leveraged the trained models to predict the gender labels from an HPV vaccine related corpus and identified gender difference in public perceptions regarding HPV vaccine. The findings are largely consistent with previous survey-based studies.


Learning to Exploit Invariances in Clinical Time-Series Data using Sequence Transformer Networks

arXiv.org Machine Learning

Recently, researchers have started applying convolutional neural networks (CNNs) with one-dimensional convolutions to clinical tasks involving time-series data. This is due, in part, to their computational efficiency, relative to recurrent neural networks and their ability to efficiently exploit certain temporal invariances, (e.g., phase invariance). However, it is well-established that clinical data may exhibit many other types of invariances (e.g., scaling). While preprocessing techniques, (e.g., dynamic time warping) may successfully transform and align inputs, their use often requires one to identify the types of invariances in advance. In contrast, we propose the use of Sequence Transformer Networks, an end-to-end trainable architecture that learns to identify and account for invariances in clinical time-series data. Applied to the task of predicting in-hospital mortality, our proposed approach achieves an improvement in the area under the receiver operating characteristic curve (AUROC) relative to a baseline CNN (AUROC=0.851 vs. AUROC=0.838). Our results suggest that a variety of valuable invariances can be learned directly from the data.