Goto

Collaborating Authors

Artificial intelligence better than humans at spotting lung cancer

#artificialintelligence

Researchers have used a deep-learning algorithm to detect lung cancer accurately from computed tomography scans. The results of the study indicate that artificial intelligence can outperform human evaluation of these scans. The condition is the leading cause of cancer-related death in the U.S., and early detection is crucial for both stopping the spread of tumors and improving patient outcomes. As an alternative to chest X-rays, healthcare professionals have recently been using computed tomography (CT) scans to screen for lung cancer. In fact, some scientists argue that CT scans are superior to X-rays for lung cancer detection, and research has shown that low-dose CT (LDCT) in particular has reduced lung cancer deaths by 20%.


Artificial intelligence system spots lung cancer before radiologists

#artificialintelligence

CHICAGO --- Deep learning - a form of artificial intelligence - was able to detect malignant lung nodules on low-dose chest computed tomography (LDCT) scans with a performance meeting or exceeding that of expert radiologists, reports a new study from Google and Northwestern Medicine. This deep-learning system provides an automated image evaluation system to enhance the accuracy of early lung cancer diagnosis that could lead to earlier treatment. The deep-learning system was compared against radiologists on LDCTs for patients, some of whom had biopsy confirmed cancer within a year. In most comparisons, the model performed at or better than radiologists. Deep learning is a technique that teaches computers to learn by example.


Artificial intelligence system spots lung cancer before radiologists

#artificialintelligence

CHICAGO --- Deep learning - a form of artificial intelligence - was able to detect malignant lung nodules on low-dose chest computed tomography (LDCT) scans with a performance meeting or exceeding that of expert radiologists, reports a new study from Google and Northwestern Medicine. This deep-learning system provides an automated image evaluation system to enhance the accuracy of early lung cancer diagnosis that could lead to earlier treatment. The deep-learning system was compared against radiologists on LDCTs for patients, some of whom had biopsy confirmed cancer within a year. In most comparisons, the model performed at or better than radiologists. Deep learning is a technique that teaches computers to learn by example.


AI can diagnose breast cancer more accurately than a doctor can

#artificialintelligence

Artificial intelligence can diagnose breast cancer more accurately than trained doctors, a study suggests. The research on almost 30,000 women who underwent screening found a computer programme could reduce the number of cases missed by more than two thirds. Researchers said the algorithmdeveloped by Imperial College London, Northwestern University in Chicago and Google Health was a "huge advance" in early detection of cancers. Breast cancer is the most common type of cancer in the UK, affecting around one in eight women - with 55,000 diagnoses annually and 11,000 deaths. Experts said the breakthrough could save thousands of lives, by finding deadly tumours that would otherwise go undetected.


How Google AI Is Improving Mammograms

#artificialintelligence

While there has been controversy over when and how often women should be screened for breast cancer using mammograms, studies consistently show that screening can lead to earlier detection of the disease, when it's more treatable. So improving how effectively mammograms can detect abnormal growths that could be cancerous is a priority in the field. AI could play a role in accomplishing that--computer-based machine learning might help doctors to read mammograms more accurately. In a study published Jan. 1 in Nature, researchers from Google Health, and from universities in the U.S. and U.K., report on an AI model that reads mammograms with fewer false positives and false negatives than human experts. The algorithm, based on mammograms taken from more than 76,000 women in the U.K. and more than 15,000 in the U.S., reduced false positive rates by nearly 6% in the U.S., where women are screened every one to two years, and by 1.2% in the U.K., where women are screened every three years.