Designing Quality into Expert Systems: A Case Study in Automated Insurance Underwriting

AAAI Conferences

It can be difficult to design and develop artificial intelligence systems to meet specific quality standards. Often, AI systems are designed to be "as good as possible" rather than meeting particular targets. Using the Design for Six Sigma quality methodology, an automated insurance underwriting expert system was designed, developed, and fielded. Using this methodology resulted in meeting the high quality expectations required for deployment.


How blockchain can improve the mortgage process

#artificialintelligence

Global banks that have a large mortgage business are facing pressure internally and externally to upgrade their operating model to save money, decrease processing times and enhance the customer experience – today it can take more than 60 days to complete a mortgage transaction. The pressure is particularly strong with FinTechs like US online lender Rocket Mortgage and UK digital mortgage broker Trussle creating a completely digital experience for prospective home buyers. Banks, therefore, are exploring everything from mature technologies like Optical Character Recognition (OCR) to more leading edge and high-tech solutions based on blockchain and artificial intelligence. While some of these solutions could dramatically impact day-to-day business for lenders and their brokers and customers, blockchain has the potential to completely transform the entire mortgage financing industry. The financial services industry is all about trust – whether relationship based, reputational, authoritative (legal) or transactional – banking today is built on trust.


Sparsity-Promoting Bayesian Dynamic Linear Models

arXiv.org Machine Learning

Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets.


Credit Risk Prediction Using Artificial Neural Network Algorithm

@machinelearnbot

Credit risk or credit default indicates the probability of non-repayment of bank financial services that have been given to the customers. Credit risk has always been an extensively studied area in bank lending decisions. Credit risk plays a crucial role for banks and financial institutions, especially for commercial banks and it is always difficult to interpret and manage. Due to the advancements in technology, banks have managed to reduce the costs, in order to develop robust and sophisticated systems and models to predict and manage credit risk. To predict the credit default, several methods have been created and proposed.


Synechron launches AI data science accelerators for FS firms

#artificialintelligence

These four new solution accelerators help financial services and insurance firms solve complex business challenges by discovering meaningful relationships between events that impact one another (correlation) and cause a future event to happen (causation). Following the success of Synechron's AI Automation Program – Neo, Synechron's AI Data Science experts have developed a powerful set of accelerators that allow financial firms to address business challenges related to investment research generation, predicting the next best action to take with a wealth management client, high-priority customer complaints, and better predicting credit risk related to mortgage lending. The Accelerators combine Natural Language Processing (NLP), Deep Learning algorithms and Data Science to solve the complex business challenges and rely on a powerful Spark and Hadoop platform to ingest and run correlations across massive amounts of data to test hypotheses and predict future outcomes. The Data Science Accelerators are the fifth Accelerator program Synechron has launched in the last two years through its Financial Innovation Labs (FinLabs), which are operating in 11 key global financial markets across North America, Europe, Middle East and APAC; including: New York, Charlotte, Fort Lauderdale, London, Paris, Amsterdam, Serbia, Dubai, Pune, Bangalore and Hyderabad. With this, Synechron's Global Accelerator programs now includes over 50 Accelerators for: Blockchain, AI Automation, InsurTech, RegTech, and AI Data Science and a dedicated team of over 300 employees globally.