Software AG acquires AI company Zementis to expand IoT capability - Computer Business Review

#artificialintelligence

The acquisition will bring Zementis' predictive analytics to Software AG's real-time streaming analytics platform. Software AG has acquired California-based Zementis for an undisclosed sum in a move designed to bolster its internet of things capability. Zementis offers software for'deep learning' which plays a crucial role in the development of machine learning, data science and fundamental technology that drives artificial intelligence (AI) development. According to Software AG, the advances in machine learning and AI are being applied in the next generation Internet of Things (IoT) such as self-driving cars, personal digital assistants, medical diagnosis, predictive maintenance and robotics. Software AG has already employed Adaptive Decision and Predictive Analytics (ADAPA) from Zementis into its Digital Business Platform to offer its clients with comprehensive insights for real time business analytics.


How Drive.ai Is Mastering Autonomous Driving With Deep Learning

#artificialintelligence

Among all of the self-driving startups working toward Level 4 autonomy (a self-driving system that doesn't require human intervention in most scenarios), Mountain View, Calif.-based Drive.ai's Drive sees deep learning as the only viable way to make a truly useful autonomous car in the near term, says Sameep Tandon, cofounder and CEO. "If you look at the long-term possibilities of these algorithms and how people are going to build [self-driving cars] in the future, having a learning system just makes the most sense. There's so much complication in driving, there are so many things that are nuanced and hard, that if you have to do this in ways that aren't learned, then you're never going to get these cars out there." It's only been about a year since Drive went public, but already, the company has a fleet of four vehicles navigating (mostly) autonomously around the San Francisco Bay Area--even in situations (such as darkness, rain, or hail) that are notoriously difficult for self-driving cars. Last month, we went out to California to take a ride in one of Drive's cars, and to find out how it's using deep learning to master autonomous driving.


How Drive.ai Is Mastering Autonomous Driving with Deep Learning

#artificialintelligence

Among all of the self-driving startups working towards Level 4 autonomy (a self-driving system that doesn't require human intervention in most scenarios), Mountain View, Calif.-based Drive.ai's Drive sees deep learning as the only viable way to make a truly useful autonomous car in the near term, says Sameep Tandon, cofounder and CEO. "If you look at the long-term possibilities of these algorithms and how people are going to build [self-driving cars] in the future, having a learning system just makes the most sense. There's so much complication in driving, there are so many things that are nuanced and hard, that if you have to do this in ways that aren't learned, then you're never going to get these cars out there." It's only been about a year since Drive went public, but already, the company has a fleet of four vehicles navigating (mostly) autonomously around the San Francisco Bay Area--even in situations (such as darkness, rain, or hail) that are notoriously difficult for self-driving cars. Last month, we went out to California to take a ride in one of Drive's cars, and to find out how they're using deep learning to master autonomous driving.


Intel chases AI with new chips, but still lacks a potent GPU

PCWorld

Intel is taking a new direction in chip development as it looks to the future of artificial intelligence, with the company betting the technology will pervade applications and web services. The company on Thursday said it is developing new chips that will handle AI workloads, which will increasingly be a part of its chip future. For now, the AI chips will be released as specialized primary chips or co-processors in computers and separate from the major product lines. But over time, Intel could adapt and integrate the AI features into its mainstream server, IoT, and perhaps even PC chips. The AI features could be useful in servers, drones, robots, and autonomous cars.


Intelligent vision systems and AI for the development of autonomous driving

#artificialintelligence

Maintaining the highest level of user safety will be non-negotiable when it comes to the deployment of autonomous vehicles whether they are used for personal or mass transport, or logistics in industrial environments. However, for reasons of sheer volume, it will be road vehicles where the biggest changes will be felt. Vehicle efficiency and road safety will be improved and congestion will come down and the technology and legislation is in development to make it a reality. It is generally agreed that the transition to autonomous driving will be gradual. In the US, the National Highway Traffic Safety Administration (NHTSA) has defined five levels of automation, from 0 to 4, which it refers to as the automation continuum.