How science can help us make AI more trustworthy

#artificialintelligence

Stories about racist Twitter accounts and crashing self-driving cars can make us think that artificial intelligence (AI) is a work in progress. But while these headline-grabbing mistakes reveal the frontiers of AI, versions of this technology are already invisibly embedded in many systems that we use everyday. These everyday uses include everything from fraud detection systems that monitor credit card transactions to email filters that learn not to swamp your inbox with spam. You've probably already interacted with an AI system today without even knowing it and probably enjoyed the experience. One increasingly common form of AI can be found in chatbots, a type of software that lets you interact with it by having a conversation.


How science can help us make AI less creepy and more trustworthy

#artificialintelligence

Stories about racist Twitter accounts and crashing self-driving cars can make us think that artificial intelligence (AI) is a work in progress. But while these headline-grabbing mistakes reveal the frontiers of AI, versions of this technology are already invisibly embedded in many systems that we use everyday. These everyday uses include everything from fraud detection systems that monitor credit card transactions to email filters that learn not to swamp your inbox with spam. You've probably already interacted with an AI system today without even knowing it and probably enjoyed the experience. One increasingly common form of AI can be found in chatbots, a type of software that lets you interact with it by having a conversation.


Artificial intelligence powers digital medicine

#artificialintelligence

While this reality has become more tangible in recent years through consumer technology, such as Amazon's Alexa or Apple's Siri, the applications of AI software are already widespread, ranging from credit card fraud detection at VISA to payload scheduling operations at NASA to insider trading surveillance on the NASDAQ. Broadly defined as the imitation of human cognition by a machine, recent interest in AI has been driven by advances in machine learning, in which computer algorithms learn from data without human direction.1 Most sophisticated processes that involve some form of prediction generated from a large data set use this type of AI, including image recognition, web-search, speech-to-text language processing, and e-commerce product recommendations.2 AI is increasingly incorporated into devices that consumers keep with them at all times, such as smartphones, and powers consumer technologies on the horizon, such as self-driving cars. And there is anticipation that these advances will continue to accelerate: a recent survey of leading AI researchers predicted that, within the next 10 years, AI will outperform humans in transcribing speech, translating languages, and driving a truck.3


Google Brain co-founder raises $175 million fund for AI startups

#artificialintelligence

Ng announced Tuesday that he raised money from venture capital firms New Enterprise Associates, Sequoia Capital and Greylock Partners as well as SoftBank Group Corp. Under Ng, Baidu released a voice-based operating system that users can talk to - much like Amazon's Alexa voice assistant or Apple's Siri - and also started working on self-driving cars and face recognition technology to open things like transit turnstiles when users approach. I think it's a more systematic, repeatable process than most people think," said Ng, who also taught artificial intelligence courses at Stanford University. The first company to receive money from the fund will be Landing.ai,


Is superintelligence a threat for human decision-making? -- e-Estonia

#artificialintelligence

I feel that there was a sort of explosion a couple of years ago after which the whole topic of Artificial Intelligence (AI) suddenly sprang into a wider audience's consciousness. All of a sudden we had Siri, Amazon's Alexa and we started talking about self-driving cars. Jaan Tallinn, how did it happen? There were two different explosions. I believe that a lot of the latter had to do with the works of Elon Musk and Stephen Hawking. Most importantly, the former was the revolution of deep learning.