AI Game-Playing Techniques

AI Magazine

In conjunction with the Association for the Advancement of Artificial Intelligence's Hall of Champions exhibit, the Innovative Applications of Artificial Intelligence held a panel discussion entitled "AI Game-Playing Techniques: Are They Useful for Anything Other Than Games?" This article summarizes the panelists' comments about whether ideas and techniques from AI game playing are useful elsewhere and what kinds of game might be suitable as "challenge problems" for future research.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


The Moral Imperative of Artificial Intelligence

#artificialintelligence

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


The Moral Imperative of Artificial Intelligence

Communications of the ACM

The big news on March 12 of this year was of the Go-playing AI-system AlphaGo securing victory against 18-time world champion Lee Se-dol by winning the third straight game of a five-game match in Seoul, Korea. After Deep Blue's victory against chess world champion Gary Kasparov in 1997, the game of Go was the next grand challenge for game-playing artificial intelligence. Go has defied the brute-force methods in game-tree search that worked so successfully in chess. In 2012, Communications published a Research Highlight article by Sylvain Gelly et al. on computer Go, which reported that "Programs based on Monte-Carlo tree search now play at human-master levels and are beginning to challenge top professional players." AlphaGo combines tree-search techniques with search-space reduction techniques that use deep learning.


Bayesian Learning of Generalized Board Positions for Improved Move Prediction in Computer Go

AAAI Conferences

Computer Go presents a challenging problem for machine learning agents. With the number of possible board states estimated to be larger than the number of hydrogen atoms in the universe, learning effective policies or board evaluation functions is extremely difficult. In this paper we describe Cortigo, a system that efficiently and autonomously learns useful generalizations for large state-space classification problems such as Go. Cortigo uses a hierarchical generative model loosely related to the human visual cortex to recognize Go board positions well enough to suggest promising next moves. We begin by briefly describing and providing motivation for research in the computer Go domain. We describe Cortigo’s ability to learn predictive models based on large subsets of the Go board and demonstrate how using Cortigo’s learned models as additive knowledge in a state-of-the-art computer Go player (Fuego) significantly improves its playing strength.