Collaborating Authors

Top 6 Ways To Elevate Industrial Growth Through Machine Learning


Manoj Rupareliya is an experienced writer working at AppEmporio possessing expertise in writing on technical, financial and digital marketing niches and provides excellent guidance to hire developers and covers essential aspects for beginners to learn and develop skills for brighter future. Industrial Growth has always been driven by the singular most important factor-Automation! This automation has now been the paper of industrial growth for over 150 years and Artificial Intelligence is the next frontier on this growth story. Due to its machine learning capabilities and data analytics technologies, AI has transformed the industrial process automation to a new level. Research and innovations have made automation more rapid and error-free.

Artificial Intelligence in Manufacturing: The Evolution of Industry - CiOL


Artificial Intelligence is benefiting to various industries including healthcare, education and manufacturing. But what is Artificial intelligence (AI)? In Layman language, a simulator of human intelligence, which makes the decision after analyzing various data utilizing a collection of different intelligent technologies including machine and deep learning, analytics and computer vision. The fourth industrial revolution is employing AI to enhance its overall efficiency. The technology is not only helping to reduce manufacturing cost as well as it is improving productivity and quality. Manufacturing is a capital-intensive process, and once a plant is a set-up, replacing, removing or renovating is exorbitantly expensive. New machines improve performance; reduce redundancies, while improving overall quality metrics. AI is proving an alternative route to achieve all this and at extremely competitive price points. Instead of now replacing machines, manufacturers are adding AI/ML tools to pre-inspect raw materials identify defects, perform quality evaluations, and a lot more.

Machine Learning is the Solution to the Big Data Problem Caused by the IoT - IT Peer Network


Big data has already made fundamental changes to the way businesses operate. There are huge advantages for companies who can derive value from their data, but these opportunities come with challenges, too. For some, this is the challenge of acquiring data from new sources. For others, it is the task of building a scalable infrastructure that can manage the data in aggregate. For a brave few, it means extracting value from the data by implementing advanced analytic techniques and tools.

Turning to Machine Learning for Industrial Automation Applications


At its core, machine learning studies the construction of algorithms and learns from them to make predictions on data by building models from sample inputs. If we further break it down, machine learning borrows heavily from computational statistics (prediction modeling using computers) and mathematical optimization, which provides methods, theory and application data to those models. In essence, it creates its own data models based on algorithms and then uses them to predict defined patterns within a range of data sets. Machine-learning algorithms can be broken down into five types: supervised, unsupervised, semi-supervised, active, and reinforcement, all of which act just like they sound. Supervised algorithms are programmed and implemented by humans to provide both input and output as well as furnishing feedback on predictive accuracy during training.

Artificial intelligence gets to work in the automotive industry


Artificial intelligence is among the most fascinating ideas of our time. It has captured the imagination of visionaries, science fiction writers, engineers and wall street analysts alike. In fact, artificial intelligence is in many ways a catalyst for the data revolution – something that has disrupted every aspect of modern life. As with all new technologies, some are faster to embrace them, and others are much slower. Is automotive manufacturing one of the faster ones or would it be among the last?