Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

A Survey on Edge Intelligence Artificial Intelligence

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Real-Time Steganalysis for Stream Media Based on Multi-channel Convolutional Sliding Windows Artificial Intelligence

Previous VoIP steganalysis methods face great challenges in detecting speech signals at low embedding rates, and they are also generally difficult to perform real-time detection, making them hard to truly maintain cyberspace security. To solve these two challenges, in this paper, combined with the sliding window detection algorithm and Convolution Neural Network we propose a real-time VoIP steganalysis method which based on multi-channel convolution sliding windows. In order to analyze the correlations between frames and different neighborhood frames in a VoIP signal, we define multi channel sliding detection windows. Within each sliding window, we design two feature extraction channels which contain multiple convolution layers with multiple convolution kernels each layer to extract correlation features of the input signal. Then based on these extracted features, we use a forward fully connected network for feature fusion. Finally, by analyzing the statistical distribution of these features, the discriminator will determine whether the input speech signal contains covert information or not.We designed several experiments to test the proposed model's detection ability under various conditions, including different embedding rates, different speech length, etc. Experimental results showed that the proposed model outperforms all the previous methods, especially in the case of low embedding rate, which showed state-of-the-art performance. In addition, we also tested the detection efficiency of the proposed model, and the results showed that it can achieve almost real-time detection of VoIP speech signals.

Information-based Adaptive Stimulus Selection to Optimize Communication Efficiency in Brain-Computer Interfaces

Neural Information Processing Systems

Stimulus-driven brain-computer interfaces (BCIs), such as the P300 speller, rely on using a sequence of sensory stimuli to elicit specific neural responses as control signals, while a user attends to relevant target stimuli that occur within the sequence. In current BCIs, the stimulus presentation schedule is typically generated in a pseudo-random fashion. Given the non-stationarity of brain electrical signals, a better strategy could be to adapt the stimulus presentation schedule in real-time by selecting the optimal stimuli that will maximize the signal-to-noise ratios of the elicited neural responses and provide the most information about the user's intent based on the uncertainties of the data being measured. However, the high-dimensional stimulus space limits the development of algorithms with tractable solutions for optimized stimulus selection to allow for real-time decision-making within the stringent time requirements of BCI processing. We derive a simple analytical solution of an information-based objective function for BCI stimulus selection by transforming the high-dimensional stimulus space into a one-dimensional space that parameterizes the objective function - the prior probability mass of the stimulus under consideration, irrespective of its contents. We demonstrate the utility of our adaptive stimulus selection algorithm in improving BCI performance with results from simulation and real-time human experiments.