10 Ways Machine Learning Is Revolutionizing Supply Chain Management

#artificialintelligence

Bottom line: Machine learning makes it possible to discover patterns in supply chain data by relying on algorithms that quickly pinpoint the most influential factors to a supply networks' success, while constantly learning in the process. Discovering new patterns in supply chain data has the potential to revolutionize any business. Machine learning algorithms are finding these new patterns in supply chain data daily, without needing manual intervention or the definition of taxonomy to guide the analysis. The algorithms iteratively query data with many using constraint-based modeling to find the core set of factors with the greatest predictive accuracy. Key factors influencing inventory levels, supplier quality, demand forecasting, procure-to-pay, order-to-cash, production planning, transportation management and more are becoming known for the first time.


10 Ways Machine Learning Is Revolutionizing Supply Chain Management

#artificialintelligence

Bottom line: Machine learning makes it possible to discover patterns in supply chain data by relying on algorithms that quickly pinpoint the most influential factors to a supply networks' success, while constantly learning in the process. Discovering new patterns in supply chain data has the potential to revolutionize any business. Machine learning algorithms are finding these new patterns in supply chain data daily, without needing manual intervention or the definition of taxonomy to guide the analysis. The algorithms iteratively query data with many using constraint-based modeling to find the core set of factors with the greatest predictive accuracy. Key factors influencing inventory levels, supplier quality, demand forecasting, procure-to-pay, order-to-cash, production planning, transportation management and more are becoming known for the first time.


10 Ways Machine Learning Is Revolutionizing Supply Chain Management

Forbes - Tech

Bottom line: Machine learning makes it possible to discover patterns in supply chain data by relying on algorithms that quickly pinpoint the most influential factors to a supply networks' success, while constantly learning in the process. Discovering new patterns in supply chain data has the potential to revolutionize any business. Machine learning algorithms are finding these new patterns in supply chain data daily, without needing manual intervention or the definition of taxonomy to guide the analysis. The algorithms iteratively query data with many using constraint-based modeling to find the core set of factors with the greatest predictive accuracy. Key factors influencing inventory levels, supplier quality, demand forecasting, procure-to-pay, order-to-cash, production planning, transportation management and more are becoming known for the first time.


10 Ways Machine Learning Is Revolutionizing Manufacturing In 2019

#artificialintelligence

Bottom Line: The leading growth strategy for manufacturers in 2019 is improving shop floor productivity by investing in machine learning platforms that deliver the insights needed to improve product quality and production yields. Using machine learning to streamline every phase of production, starting with inbound supplier quality through manufacturing scheduling to fulfillment is now a priority in manufacturing. According to a recent survey by Deloitte, machine learning is reducing unplanned machinery downtime between 15 – 30%, increasing production throughput by 20%, reducing maintenance costs 30% and delivering up to a 35% increase in quality. Accenture, Manufacturing The Future, Artificial intelligence will fuel the next wave of growth for industrial equipment companies (PDF, 20 pp., no opt-in) How the IIoT can change business models. How emerging technologies can transform the supply chain.