Collaborating Authors

Asymmetric Learning Vector Quantization for Efficient Nearest Neighbor Classification in Dynamic Time Warping Spaces Machine Learning

The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the most popular approaches in time series classification. This method suffers from high storage and computation requirements for large training sets. As a solution to both drawbacks, this article extends learning vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed LVQ scheme uses asymmetric weighted averaging as update rule. Empirical results exhibited superior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype generation methods for nearest neighbor classification.

Fast Methods for Recovering Sparse Parameters in Linear Low Rank Models Machine Learning

In this paper, we investigate the recovery of a sparse weight vector (parameters vector) from a set of noisy linear combinations. However, only partial information about the matrix representing the linear combinations is available. Assuming a low-rank structure for the matrix, one natural solution would be to first apply a matrix completion on the data, and then to solve the resulting compressed sensing problem. In big data applications such as massive MIMO and medical data, the matrix completion step imposes a huge computational burden. Here, we propose to reduce the computational cost of the completion task by ignoring the columns corresponding to zero elements in the sparse vector. To this end, we employ a technique to initially approximate the support of the sparse vector. We further propose to unify the partial matrix completion and sparse vector recovery into an augmented four-step problem. Simulation results reveal that the augmented approach achieves the best performance, while both proposed methods outperform the natural two-step technique with substantially less computational requirements.

Probabilistic Learning Vector Quantization on Manifold of Symmetric Positive Definite Matrices Machine Learning

In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matrices, which are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical investigations on synthetic data, image data , and motor imagery EEG data demonstrate the superior performance of the proposed method.

Online Updating the Generalized Inverse of Centered Matrices

AAAI Conferences

In this paper, we present the exact online updating formulae for the generalized inverse of centered matrices. The computational cost is O ( mn ) for matrices of size m × n . Experimental results validate the proposed method’s accuracy and efficiency.  

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions Machine Learning

Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.