Goto

Collaborating Authors


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.


Big Data Meet Cyber-Physical Systems: A Panoramic Survey

arXiv.org Machine Learning

The world is witnessing an unprecedented growth of cyber-physical systems (CPS), which are foreseen to revolutionize our world {via} creating new services and applications in a variety of sectors such as environmental monitoring, mobile-health systems, intelligent transportation systems and so on. The {information and communication technology }(ICT) sector is experiencing a significant growth in { data} traffic, driven by the widespread usage of smartphones, tablets and video streaming, along with the significant growth of sensors deployments that are anticipated in the near future. {It} is expected to outstandingly increase the growth rate of raw sensed data. In this paper, we present the CPS taxonomy {via} providing a broad overview of data collection, storage, access, processing and analysis. Compared with other survey papers, this is the first panoramic survey on big data for CPS, where our objective is to provide a panoramic summary of different CPS aspects. Furthermore, CPS {require} cybersecurity to protect {them} against malicious attacks and unauthorized intrusion, which {become} a challenge with the enormous amount of data that is continuously being generated in the network. {Thus, we also} provide an overview of the different security solutions proposed for CPS big data storage, access and analytics. We also discuss big data meeting green challenges in the contexts of CPS.


Reinforcement Learning in Healthcare: A Survey

arXiv.org Artificial Intelligence

As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one's capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research.


Large expert-curated database for benchmarking document similarity detection in biomedical literature search

#artificialintelligence

Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations.