Collaborating Authors

Using AI to Reduce IoT Vulnerability


This article considers the use of artificial intelligence to help security professionals protect IoT systems. The Internet of Things (IoT) is still in its infancy, but threats to IoT systems and their potential for harm have become quite sophisticated. There are two reasons for this: the value of data and systems that IoT vulnerabilities can give access to; and the high number of potential attack vectors – discrete elements of IoT networks that are vulnerable to foul play. Artificial intelligence (AI) software and algorithms help security professionals to wrest control of this technological battleground back from hackers and protect the IoT as it reaches maturity. Only introduced in 2008, the Internet of Things and IoT systems are still fairly nebulous concepts, subjects of numerous and sometimes conflicting definitions.

Design of a dynamic and self-adapting system, supported with artificial intelligence, machine learning and real-time intelligence for predictive cyber risk analytics Artificial Intelligence

This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.

A Storm in an IoT Cup: The Emergence of Cyber-Physical Social Machines Artificial Intelligence

The concept of social machines is increasingly being used to characterise various socio-cognitive spaces on the Web. Social machines are human collectives using networked digital technology which initiate real-world processes and activities including human communication, interactions and knowledge creation. As such, they continuously emerge and fade on the Web. The relationship between humans and machines is made more complex by the adoption of Internet of Things (IoT) sensors and devices. The scale, automation, continuous sensing, and actuation capabilities of these devices add an extra dimension to the relationship between humans and machines making it difficult to understand their evolution at either the systemic or the conceptual level. This article describes these new socio-technical systems, which we term Cyber-Physical Social Machines, through different exemplars, and considers the associated challenges of security and privacy.

Blockchained Federated Learning for Threat Defense Artificial Intelligence

Given the increasing complexity of threats in smart cities, the changing environment, and the weakness of traditional security systems, which in most cases fail to detect serious threats such as zero-day attacks, the need for alternative more active and more effective security methods keeps increasing. Such approaches are the adoption of intelligent solutions to prevent, detect and deal with threats or anomalies under the conditions and the operating parameters of the infrastructure in question. This research paper introduces the development of an intelligent Threat Defense system, employing Blockchain Federated Learning, which seeks to fully upgrade the way passive intelligent systems operate, aiming at implementing an Advanced Adaptive Cooperative Learning (AACL) mechanism for smart cities networks. The AACL is based on the most advanced methods of computational intelligence while ensuring privacy and anonymity for participants and stakeholders. The proposed framework combines Federated Learning for the distributed and continuously validated learning of the tracing algorithms. Learning is achieved through encrypted smart contracts within the blockchain technology, for unambiguous validation and control of the process. The aim of the proposed Framework is to intelligently classify smart cities networks traffic derived from Industrial IoT (IIoT) by Deep Content Inspection (DCI) methods, in order to identify anomalies that are usually due to Advanced Persistent Threat (APT) attacks.

The New Wave of Automated Cyber Attacks


From big players to small and midsize businesses, every organization has faced the impact of cyber threats at some point. But, the new generation of automated cyber attacks will affect multiple businesses to an unimaginable extent. With the onset of the digital age, going online became a necessity for every business. Most business processes, data storage, and data exchange are now handled digitally. Data has become such a significant asset that companies have started monetizing their data.