Goto

Collaborating Authors

Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.


Multi-agent Reinforcement Learning Embedded Game for the Optimization of Building Energy Control and Power System Planning

arXiv.org Machine Learning

Most of the current game-theoretic demand-side management methods focus primarily on the scheduling of home appliances, and the related numerical experiments are analyzed under various scenarios to achieve the corresponding Nash-equilibrium (NE) and optimal results. However, not much work is conducted for academic or commercial buildings. The methods for optimizing academic-buildings are distinct from the optimal methods for home appliances. In my study, we address a novel methodology to control the operation of heating, ventilation, and air conditioning system (HVAC). With the development of Artificial Intelligence and computer technologies, reinforcement learning (RL) can be implemented in multiple realistic scenarios and help people to solve thousands of real-world problems. Reinforcement Learning, which is considered as the art of future AI, builds the bridge between agents and environments through Markov Decision Chain or Neural Network and has seldom been used in power system. The art of RL is that once the simulator for a specific environment is built, the algorithm can keep learning from the environment. Therefore, RL is capable of dealing with constantly changing simulator inputs such as power demand, the condition of power system and outdoor temperature, etc. Compared with the existing distribution power system planning mechanisms and the related game theoretical methodologies, our proposed algorithm can plan and optimize the hourly energy usage, and have the ability to corporate with even shorter time window if needed.


New Hybrid Neuro-Evolutionary Algorithms for Renewable Energy and Facilities Management Problems

arXiv.org Machine Learning

This Ph.D. thesis deals with the optimization of several renewable energy resources development as well as the improvement of facilities management in oceanic engineering and airports, using computational hybrid methods belonging to AI to this end. Energy is essential to our society in order to ensure a good quality of life. This means that predictions over the characteristics on which renewable energies depend are necessary, in order to know the amount of energy that will be obtained at any time. The second topic tackled in this thesis is related to the basic parameters that influence in different marine activities and airports, whose knowledge is necessary to develop a proper facilities management in these environments. Within this work, a study of the state-of-the-art Machine Learning have been performed to solve the problems associated with the topics above-mentioned, and several contributions have been proposed: One of the pillars of this work is focused on the estimation of the most important parameters in the exploitation of renewable resources. The second contribution of this thesis is related to feature selection problems. The proposed methodologies are applied to multiple problems: the prediction of $H_s$, relevant for marine energy applications and marine activities, the estimation of WPREs, undesirable variations in the electric power produced by a wind farm, the prediction of global solar radiation in areas from Spain and Australia, really important in terms of solar energy, and the prediction of low-visibility events at airports. All of these practical issues are developed with the consequent previous data analysis, normally, in terms of meteorological variables.


Smart Energy: A Blueprint for AI, IoT And 5G Convergence

#artificialintelligence

For scale, consider the Statue of Liberty, standing 305 feet tall. At 466 feet, the average wind turbine in the U.S. dwarfs Lady Liberty by more than half. And when GE's next-generation monster wind turbine, the Haliade-X, hits the market in 2021, it will nearly double that size to 877 feet, just shy of the Eiffel Tower. A single Haliade-X rotor blade will stretch 315 feet, longer than a football field. As a general rule of thumb, when it comes to energy and energy exploration, bigger is better: the larger the machinery, the deeper the dig, the greater the production yield.


A Hierarchical Genetic Optimization of a Fuzzy Logic System for Flow Control in Micro Grids

arXiv.org Artificial Intelligence

Bio-inspired algorithms like Genetic Algorithms and Fuzzy Inference Systems (FIS) are nowadays widely adopted as hybrid techniques in commercial and industrial environment. In this paper we present an interesting application of the fuzzy-GA paradigm to Smart Grids. The main aim consists in performing decision making for power flow management tasks in the proposed microgrid model equipped by renewable sources and an energy storage system, taking into account the economical profit in energy trading with the main-grid. In particular, this study focuses on the application of a Hierarchical Genetic Algorithm (HGA) for tuning the Rule Base (RB) of a Fuzzy Inference System (FIS), trying to discover a minimal fuzzy rules set in a Fuzzy Logic Controller (FLC) adopted to perform decision making in the microgrid. The HGA rationale focuses on a particular encoding scheme, based on control genes and parametric genes applied to the optimization of the FIS parameters, allowing to perform a reduction in the structural complexity of the RB. This approach will be referred in the following as fuzzy-HGA. Results are compared with a simpler approach based on a classic fuzzy-GA scheme, where both FIS parameters and rule weights are tuned, while the number of fuzzy rules is fixed in advance. Experiments shows how the fuzzy-HGA approach adopted for the synthesis of the proposed controller outperforms the classic fuzzy-GA scheme, increasing the accounting profit by 67\% in the considered energy trading problem yielding at the same time a simpler RB.