Goto

Collaborating Authors

Knowledge Graphs and Knowledge Networks: The Story in Brief

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs) represent real-world noisy raw information in a structured form, capturing relationships between entities. However, for dynamic real-world applications such as social networks, recommender systems, computational biology, relational knowledge representation has emerged as a challenging research problem where there is a need to represent the changing nodes, attributes, and edges over time. The evolution of search engine responses to user queries in the last few years is partly because of the role of KGs such as Google KG. KGs are significantly contributing to various AI applications from link prediction, entity relations prediction, node classification to recommendation and question answering systems. This article is an attempt to summarize the journey of KG for AI.


Question Answering based on Knowledge Graphs

#artificialintelligence

The search only for documents is outdated. Users who have already adopted a question-answering (QA) approach with their personal devices, e.g., those powered by Alexa, Google Assistant, Siri, etc., are also appreciating the advantages of using a "search engine" with the same approach in a business context. Doing so allows them to not only search for documents, but also obtain precise answers to specific questions. QA systems respond to questions that someone can ask in natural language. This technology is already widely adopted and now rapidly gaining importance in the business environment, where the most obvious added value of a conversational AI platform is improving the customer experience.


Commonsense Knowledge in Wikidata

arXiv.org Artificial Intelligence

Wikidata and Wikipedia have been proven useful for reason-ing in natural language applications, like question answering or entitylinking. Yet, no existing work has studied the potential of Wikidata for commonsense reasoning. This paper investigates whether Wikidata con-tains commonsense knowledge which is complementary to existing commonsense sources. Starting from a definition of common sense, we devise three guiding principles, and apply them to generate a commonsense subgraph of Wikidata (Wikidata-CS). Within our approach, we map the relations of Wikidata to ConceptNet, which we also leverage to integrate Wikidata-CS into an existing consolidated commonsense graph. Our experiments reveal that: 1) albeit Wikidata-CS represents a small portion of Wikidata, it is an indicator that Wikidata contains relevant commonsense knowledge, which can be mapped to 15 ConceptNet relations; 2) the overlap between Wikidata-CS and other commonsense sources is low, motivating the value of knowledge integration; 3) Wikidata-CS has been evolving over time at a slightly slower rate compared to the overall Wikidata, indicating a possible lack of focus on commonsense knowledge. Based on these findings, we propose three recommended actions to improve the coverage and quality of Wikidata-CS further.


MALOnt: An Ontology for Malware Threat Intelligence

arXiv.org Artificial Intelligence

Malware threat intelligence uncovers deep information about malware, threat actors, and their tactics, Indicators of Compromise(IoC), and vulnerabilities in different platforms from scattered threat sources. This collective information can guide decision making in cyber defense applications utilized by security operation centers(SoCs). In this paper, we introduce an open-source malware ontology - MALOnt that allows the structured extraction of information and knowledge graph generation, especially for threat intelligence. The knowledge graph that uses MALOnt is instantiated from a corpus comprising hundreds of annotated malware threat reports. The knowledge graph enables the analysis, detection, classification, and attribution of cyber threats caused by malware. We also demonstrate the annotation process using MALOnt on exemplar threat intelligence reports. A work in progress, this research is part of a larger effort towards auto-generation of knowledge graphs (KGs)for gathering malware threat intelligence from heterogeneous online resources.


OpenBioLink: A resource and benchmarking framework for large-scale biomedical link prediction

arXiv.org Artificial Intelligence

Summary: Recently, novel machine-learning algorithms have shown potential for predicting undiscovered links in biomedical knowledge networks. However, dedicated benchmarks for measuring algorithmic progress have not yet emerged. With OpenBioLink, we introduce a large-scale, high-quality and highly challenging biomedical link prediction benchmark to transparently and reproducibly evaluate such algorithms.