SpamCop: A Spam Classification & Organization Program

AAAI Conferences

Patrick Pantel and Dekang Lin Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2 Abstract We present a simple, yet highly accurate, spam filtering program, called SpamCop, which is able to identify about 92% of the spams while misclassifying only about 1.16% of the nonspam emails. SpamCop treats an email message as a multiset of words and employs a na'fve Bayes algorithm to determine whether or not a message is likely to be a spam. Compared with keyword-spotting rules, the probabilistic approach taken in SpamCop not only offers high accuracy, but also overcomes the brittleness suffered by the keyword spotting approach. Introduction With the explosive growth of the Internet, so too comes the proliferation of spams. Spammers collect a plethora of email addresses without the consent of the owners of these addresses.

Introduction to Machine Learning


The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation.

Tempering by Subsampling Machine Learning

In this paper we demonstrate that tempering Markov chain Monte Carlo samplers for Bayesian models by recursively subsampling observations without replacement can improve the performance of baseline samplers in terms of effective sample size per computation. We present two tempering by subsampling algorithms, subsampled parallel tempering and subsampled tempered transitions. We provide an asymptotic analysis of the computational cost of tempering by subsampling, verify that tempering by subsampling costs less than traditional tempering, and demonstrate both algorithms on Bayesian approaches to learning the mean of a high dimensional multivariate Normal and estimating Gaussian process hyperparameters.

will wolf


Bayesian probabilistic models provide a nimble and expressive framework for modeling "small-world" data. In contrast, deep learning offers a more rigid yet much more powerful framework for modeling data of massive size. Edward is a probabilistic programming library that bridges this gap: "black-box" variational inference enables us to fit extremely flexible Bayesian models to large-scale data. Furthermore, these models themselves may take advantage of classic deep-learning architectures of arbitrary complexity. Edward uses TensorFlow for symbolic gradients and data flow graphs.

Overview of Udacity Artificial Intelligence Engineer Nanodegree, Term 1


After finishing Udacity Deep Learning Foundation I felt that I got a good introduction to Deep Learning, but to understand things, I must dig deeper. Besides I had a guaranteed admission to Self-Driving Car Engineer, Artificial Intelligence, or Robotics Nanodegree programs.