Goto

Collaborating Authors

Facial recognition will replace passports in Australia

Engadget

Australia has started implementing biometric facial, iris and fingerprint recognition in airports, allowing passengers to go through without showing a passport or even talking to anyone. The "Seamless Traveler" project is aimed at creating a "fast, seamless self-processing experience for up to 90 percent of travelers," so that border control can focus on high-risk passengers. The handy, but invasive-sounding plan would allow international travelers to "literally just walk out like at a domestic airport," security analyst John Coyne told Australia's Sidney Morning Herald. The system would replace passport-scanning SmartGates, which were implemented in the nation just ten years ago. The government's plan to implement biometrics might be a touch ambitious, however.


On effective human robot interaction based on recognition and association

arXiv.org Artificial Intelligence

Faces play a magnificent role in human robot interaction, as they do in our daily life. The inherent ability of the human mind facilitates us to recognize a person by exploiting various challenges such as bad illumination, occlusions, pose variation etc. which are involved in face recognition. But it is a very complex task in nature to identify a human face by humanoid robots. The recent literatures on face biometric recognition are extremely rich in its application on structured environment for solving human identification problem. But the application of face biometric on mobile robotics is limited for its inability to produce accurate identification in uneven circumstances. The existing face recognition problem has been tackled with our proposed component based fragmented face recognition framework. The proposed framework uses only a subset of the full face such as eyes, nose and mouth to recognize a person. It's less searching cost, encouraging accuracy and ability to handle various challenges of face recognition offers its applicability on humanoid robots. The second problem in face recognition is the face spoofing, in which a face recognition system is not able to distinguish between a person and an imposter (photo/video of the genuine user). The problem will become more detrimental when robots are used as an authenticator. A depth analysis method has been investigated in our research work to test the liveness of imposters to discriminate them from the legitimate users. The implication of the previous earned techniques has been used with respect to criminal identification with NAO robot. An eyewitness can interact with NAO through a user interface. NAO asks several questions about the suspect, such as age, height, her/his facial shape and size etc., and then making a guess about her/his face.


Police make first arrest using facial recognition surveillance cameras at Cardiff Millennium stadium

#artificialintelligence

Police have made their first arrest based on facial recognition technology, a system that is controversial but could identify terrorism suspects in real time. South Wales police said that they arrested a local man with an outstanding warrant last week after cameras identified him from his features as he passed a surveillance van. The arrest came as officers were preparing to use cameras fitted on vehicles to film the faces of football fans attending the Champions League final at the Millennium stadium in Cardiff on Saturday. The force has received Home Office funding to pilot the technology from the NEC security business. Success could lead to a national rollout.


Fuzzy human motion analysis: A review

arXiv.org Artificial Intelligence

Human Motion Analysis (HMA) is currently one of the most popularly active research domains as such significant research interests are motivated by a number of real world applications such as video surveillance, sports analysis, healthcare monitoring and so on. However, most of these real world applications face high levels of uncertainties that can affect the operations of such applications. Hence, the fuzzy set theory has been applied and showed great success in the recent past. In this paper, we aim at reviewing the fuzzy set oriented approaches for HMA, individuating how the fuzzy set may improve the HMA, envisaging and delineating the future perspectives. To the best of our knowledge, there is not found a single survey in the current literature that has discussed and reviewed fuzzy approaches towards the HMA. For ease of understanding, we conceptually classify the human motion into three broad levels: Low-Level (LoL), Mid-Level (MiL), and High-Level (HiL) HMA.


Machine Learning Systems for Highly-Distributed and Rapidly-Growing Data

arXiv.org Machine Learning

The usability and practicality of any machine learning (ML) applications are largely influenced by two critical but hard-to-attain factors: low latency and low cost. Unfortunately, achieving low latency and low cost is very challenging when ML depends on real-world data that are highly distributed and rapidly growing (e.g., data collected by mobile phones and video cameras all over the world). Such real-world data pose many challenges in communication and computation. For example, when training data are distributed across data centers that span multiple continents, communication among data centers can easily overwhelm the limited wide-area network bandwidth, leading to prohibitively high latency and high cost. In this dissertation, we demonstrate that the latency and cost of ML on highly-distributed and rapidly-growing data can be improved by one to two orders of magnitude by designing ML systems that exploit the characteristics of ML algorithms, ML model structures, and ML training/serving data. We support this thesis statement with three contributions. First, we design a system that provides both low-latency and low-cost ML serving (inferencing) over large-scale and continuously-growing datasets, such as videos. Second, we build a system that makes ML training over geo-distributed datasets as fast as training within a single data center. Third, we present a first detailed study and a system-level solution on a fundamental and largely overlooked problem: ML training over non-IID (i.e., not independent and identically distributed) data partitions (e.g., facial images collected by cameras varies according to the demographics of each camera's location).