Goto

Collaborating Authors

Proc distance and Proc cluster in Large datasets

@machinelearnbot

The answer to your question is Yes, the number of columns would "proliferate" to 100,000 because PROC DISTANCE writes a lower triangular matrix or a square matrix to an output SAS data set. This would make the situation you describe as infeasible for analysis. Even if PROC DISTANCE wrote these pairwise distances between observations with only three variables [ID for the first observation, ID for the second observation, and the distance between these two observations], the number of pairwise distances for N observations would equal 0.5*N*(N-1). The question then becomes, why would you want to calculate about 5,000,000,000 pairwise distances for the 100,000 observations? I doubt whether you could examine any but a small fraction of them.


Developments in the theory of randomized shortest paths with a comparison of graph node distances

arXiv.org Machine Learning

There have lately been several suggestions for parametrized distances on a graph that generalize the shortest path distance and the commute time or resistance distance. The need for developing such distances has risen from the observation that the above-mentioned common distances in many situations fail to take into account the global structure of the graph. In this article, we develop the theory of one family of graph node distances, known as the randomized shortest path dissimilarity, which has its foundation in statistical physics. We show that the randomized shortest path dissimilarity can be easily computed in closed form for all pairs of nodes of a graph. Moreover, we come up with a new definition of a distance measure that we call the free energy distance. The free energy distance can be seen as an upgrade of the randomized shortest path dissimilarity as it defines a metric, in addition to which it satisfies the graph-geodetic property. The derivation and computation of the free energy distance are also straightforward. We then make a comparison between a set of generalized distances that interpolate between the shortest path distance and the commute time, or resistance distance. This comparison focuses on the applicability of the distances in graph node clustering and classification. The comparison, in general, shows that the parametrized distances perform well in the tasks. In particular, we see that the results obtained with the free energy distance are among the best in all the experiments.


Generalized Sliced Wasserstein Distances

Neural Information Processing Systems

The Wasserstein distance and its variations, e.g., the sliced-Wasserstein (SW) distance, have recently drawn attention from the machine learning community. The SW distance, specifically, was shown to have similar properties to the Wasserstein distance, while being much simpler to compute, and is therefore used in various applications including generative modeling and general supervised/unsupervised learning. In this paper, we first clarify the mathematical connection between the SW distance and the Radon transform. We then utilize the generalized Radon transform to define a new family of distances for probability measures, which we call generalized sliced-Wasserstein (GSW) distances. We further show that, similar to the SW distance, the GSW distance can be extended to a maximum GSW (max-GSW) distance.


Neural Diffusion Distance for Image Segmentation

Neural Information Processing Systems

Diffusion distance is a spectral method for measuring distance among nodes on graph considering global data structure. In this work, we propose a spec-diff-net for computing diffusion distance on graph based on approximate spectral decomposition. The network is a differentiable deep architecture consisting of feature extraction and diffusion distance modules for computing diffusion distance on image by end-to-end training. We design low resolution kernel matching loss and high resolution segment matching loss to enforce the network's output to be consistent with human-labeled image segments. To compute high-resolution diffusion distance or segmentation mask, we design an up-sampling strategy by feature-attentional interpolation which can be learned when training spec-diff-net.


Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering

Neural Information Processing Systems

Learning distance functions with side information plays a key role in many machine learning and data mining applications. Conventional approaches often assume a Mahalanobis distance function. These approaches are limited in two aspects: (i) they are computationally expensive (even infeasible) for high dimensional data because the size of the metric is in the square of dimensionality; (ii) they assume a fixed metric for the entire input space and therefore are unable to handle heterogeneous data. In this paper, we propose a novel scheme that learns nonlinear Bregman distance functions from side information using a non-parametric approach that is similar to support vector machines. The proposed scheme avoids the assumption of fixed metric because its local distance metric is implicitly derived from the Hessian matrix of a convex function that is used to generate the Bregman distance function. We present an efficient learning algorithm for the proposed scheme for distance function learning. The extensive experiments with semi-supervised clustering show the proposed technique (i) outperforms the state-of-the-art approaches for distance function learning, and (ii) is computationally efficient for high dimensional data.