Collaborating Authors

Comparing Rewinding and Fine-tuning in Neural Network Pruning Machine Learning

Many neural network pruning algorithms proceed in three steps: train the network to completion, remove unwanted structure to compress the network, and retrain the remaining structure to recover lost accuracy. The standard retraining technique, fine-tuning, trains the unpruned weights from their final trained values using a small fixed learning rate. In this paper, we compare fine-tuning to alternative retraining techniques. Weight rewinding (as proposed by Frankle et al., (2019)), rewinds unpruned weights to their values from earlier in training and retrains them from there using the original training schedule. Learning rate rewinding (which we propose) trains the unpruned weights from their final values using the same learning rate schedule as weight rewinding. Both rewinding techniques outperform fine-tuning, forming the basis of a network-agnostic pruning algorithm that matches the accuracy and compression ratios of several more network-specific state-of-the-art techniques.

Adversarial Robustness Through Local Lipschitzness Machine Learning

A standard method for improving the robustness of neural networks is adversarial training, where the network is trained on adversarial examples that are close to the training inputs. This produces classifiers that are robust, but it often decreases clean accuracy. Prior work even posits that the tradeoff between robustness and accuracy may be inevitable. We investigate this tradeoff in more depth through the lens of local Lipschitzness. In many image datasets, the classes are separated in the sense that images with different labels are not extremely close in $\ell_\infty$ distance. Using this separation as a starting point, we argue that it is possible to achieve both accuracy and robustness by encouraging the classifier to be locally smooth around the data. More precisely, we consider classifiers that are obtained by rounding locally Lipschitz functions. Theoretically, we show that such classifiers exist for any dataset such that there is a positive distance between the support of different classes. Empirically, we compare the local Lipschitzness of classifiers trained by several methods. Our results show that having a small Lipschitz constant correlates with achieving high clean and robust accuracy, and therefore, the smoothness of the classifier is an important property to consider in the context of adversarial examples. Code available at .

Unlocking Fairness: a Trade-off Revisited

Neural Information Processing Systems

The prevailing wisdom is that a model's fairness and its accuracy are in tension with one another. However, there is a pernicious {\em modeling-evaluating dualism} bedeviling fair machine learning in which phenomena such as label bias are appropriately acknowledged as a source of unfairness when designing fair models, only to be tacitly abandoned when evaluating them. We investigate fairness and accuracy, but this time under a variety of controlled conditions in which we vary the amount and type of bias. We find, under reasonable assumptions, that the tension between fairness and accuracy is illusive, and vanishes as soon as we account for these phenomena during evaluation. Moreover, our results are consistent with an opposing conclusion: fairness and accuracy are sometimes in accord.

Learning Personalized Models of Human Behavior in Chess Artificial Intelligence

Even when machine learning systems surpass human ability in a domain, there are many reasons why AI systems that capture human-like behavior would be desirable: humans may want to learn from them, they may need to collaborate with them, or they may expect them to serve as partners in an extended interaction. Motivated by this goal of human-like AI systems, the problem of predicting human actions -- as opposed to predicting optimal actions -- has become an increasingly useful task. We extend this line of work by developing highly accurate personalized models of human behavior in the context of chess. Chess is a rich domain for exploring these questions, since it combines a set of appealing features: AI systems have achieved superhuman performance but still interact closely with human chess players both as opponents and preparation tools, and there is an enormous amount of recorded data on individual players. Starting with an open-source version of AlphaZero trained on a population of human players, we demonstrate that we can significantly improve prediction of a particular player's moves by applying a series of fine-tuning adjustments. The differences in prediction accuracy between our personalized models and unpersonalized models are at least as large as the differences between unpersonalized models and a simple baseline. Furthermore, we can accurately perform stylometry -- predicting who made a given set of actions -- indicating that our personalized models capture human decision-making at an individual level.

Artificial Intelligence may help in diagnosing Tuberoculosis


The best performing artificial intelligence model was a combination of the AlexNet and GoogLeNet, with a net accuracy of 96 percent. "The relatively high accuracy of the deep learning models is exciting. The applicability for TB is important because it's a condition for which we have treatment options. It's a problem that can be solved," Dr. Lakhani shared. The two DCNN models had disagreement in 13 of the 150 test cases.