Goto

Collaborating Authors

A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.


Canada is open for AI business – some fear too open

#artificialintelligence

The world's tech powers are sending giant sums of money spinning into Canada, but while many see this as a sign of success, others are worried about researchers and intellectual property being swallowed wholesale. The country is in the midst of an artificial intelligence (AI) boom, with Google, Microsoft, Facebook, Huawei and other global heavyweights spending millions or even hundreds of millions of dollars on research hubs in Quebec, Ontario and Alberta. Canadian doors are open – some fear too open. Jim Hinton, an IP lawyer and founder of the Own Innovation consultancy, reckons that more than half of all AI patents in Canada end up being owned by foreign companies. What we need to be doing is getting money out of our ideas ourselves, instead of seeing foreign talent scoop it all up," said Hinton. "Otherwise we'll never have a Canadian champion." The country is home to hundreds of fledgling AI companies, including much-talked-about start-ups like Element AI and Deep Genomics, but they remain relatively small. "They don't have a strong market position yet," Hinton says. Deep learning pioneers such as Yoshua Bengio and Geoffrey Hinton (no relation to Jim) have nurtured top-notch talent in AI in Canada for years, back when AI was an emerging field. But despite Canadian inheriting this brilliant AI lead from the country's AI "godfathers", big foreign players have an unassailable advantage over homegrown efforts, Hinton said. "It's not an easy go for the average company to make a business out of AI.


Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review

arXiv.org Machine Learning

Pattern analysis often requires a pre-processing stage for extracting or selecting features in order to help the classification, prediction, or clustering stage discriminate or represent the data in a better way. The reason for this requirement is that the raw data are complex and difficult to process without extracting or selecting appropriate features beforehand. This paper reviews theory and motivation of different common methods of feature selection and extraction and introduces some of their applications. Some numerical implementations are also shown for these methods. Finally, the methods in feature selection and extraction are compared.


Learning Stochastic Feedforward Neural Networks

Neural Information Processing Systems

Multilayer perceptrons (MLPs) or neural networks are popular models used for nonlinear regression and classification tasks. As regressors, MLPs model the conditional distribution of the predictor variables Y given the input variables X. However, this predictive distribution is assumed to be unimodal (e.g. Gaussian). For tasks such as structured prediction problems, the conditional distribution should be multimodal, forming one-to-many mappings. By using stochastic hidden variables rather than deterministic ones, Sigmoid Belief Nets (SBNs) can induce a rich multimodal distribution in the output space. However, previously proposed learning algorithms for SBNs are very slow and do not work well for real-valued data. In this paper, we propose a stochastic feedforward network with hidden layers having \emph{both deterministic and stochastic} variables. A new Generalized EM training procedure using importance sampling allows us to efficiently learn complicated conditional distributions. We demonstrate the superiority of our model to conditional Restricted Boltzmann Machines and Mixture Density Networks on synthetic datasets and on modeling facial expressions. Moreover, we show that latent features of our model improves classification and provide additional qualitative results on color images.


How Canada is Gaining an Edge in Artificial Intelligence?

#artificialintelligence

Artificial Intelligence these days has become a new key driver of economic growth. It is a significant field in technology right now. While several countries are racing towards AI supremacy, Canada is attracting the world's tech giants that are pouring mammoth amounts in the region. The country is currently in the midst of the AI boom as companies like Microsoft, Facebook, Google, Huawei, among others are spending huge capital on research hubs in Quebec, Ontario and Alberta. Canada is a world research leader and home to extraordinary AI-driven businesses, and has played a vital role in the advancement of AI.