Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

How AI will transform education in 2017


Education has mostly followed the same structure for centuries -- e.g., the "sage on a stage" and "assembly line" models. As AI continues to disrupt industries like consumer electronics, ecommerce, media, transportation, and healthcare, is education the next big opportunity? Given that education is the foundation that prepares people to pursue advancements in all the other fields, it has the potential to be the most impactful application of AI. The three segments of the education market -- K-12, higher education, and corporate training -- are going through transitions. In the K-12 market, we are seeing the effect of the newer, more rigorous academic standards (Common Core, Next Generation Science Standards) shifting the focus toward measuring students' critical thinking and problem-solving skills and preparing them for college and career success in the 21st century.

Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI Artificial Intelligence

This is an integrative review that address the question, "What makes for a good explanation?" with reference to AI systems. Pertinent literatures are vast. Thus, this review is necessarily selective. That said, most of the key concepts and issues are expressed in this Report. The Report encapsulates the history of computer science efforts to create systems that explain and instruct (intelligent tutoring systems and expert systems). The Report expresses the explainability issues and challenges in modern AI, and presents capsule views of the leading psychological theories of explanation. Certain articles stand out by virtue of their particular relevance to XAI, and their methods, results, and key points are highlighted. It is recommended that AI/XAI researchers be encouraged to include in their research reports fuller details on their empirical or experimental methods, in the fashion of experimental psychology research reports: details on Participants, Instructions, Procedures, Tasks, Dependent Variables (operational definitions of the measures and metrics), Independent Variables (conditions), and Control Conditions.

The 2018 Survey: AI and the Future of Humans


"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.

Artificial Intelligence: Bill Gates Shares How 'Personalized Learning' Can Revolutionize Education


ADELPHI, MD - FEBRUARY 04: (AFP OUT) U.S. President Barack Obama tours a seventh grade classroom that uses technology to enhance students' learning experience, prior to delivering remarks on the ConnectED Initiative at Buck Lodge Middle School February 4, 2014 in Adelphi, Maryland. Virtual reality and artificial intelligence (AI) are becoming powerful tools needed to revolutionize education. Experts suggest the use of technology, with the integration of the ever-evolving cyber tools, will unify education and research environment and network. Despite the threat of artificial intelligence to rise up against humans and destroy humanity within decades, AI continues to prove its usefulness to mankind. Recently, artificial intelligence makes headlines for having a potential to provide solutions to various global issues such as poaching, illegal logging, cyber-\attacks, in aiding cancer diagnosis and in education.