Collaborating Authors

Large expert-curated database for benchmarking document similarity detection in biomedical literature search


Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations.

Automatic Language Identification in Texts: A Survey

Journal of Artificial Intelligence Research

Language identification (“LI”) is the problem of determining the natural language that a document or part thereof is written in. Automatic LI has been extensively researched for over fifty years. Today, LI is a key part of many text processing pipelines, as text processing techniques generally assume that the language of the input text is known. Research in this area has recently been especially active. This article provides a brief history of LI research, and an extensive survey of the features and methods used in the LI literature. We describe the features and methods using a unified notation, to make the relationships between methods clearer. We discuss evaluation methods, applications of LI, as well as off-the-shelfLI systems that do not require training by the end user. Finally, we identify open issues, survey the work to date on each issue, and propose future directions for research in LI.

An Evolutionary Hierarchical Interval Type-2 Fuzzy Knowledge Representation System (EHIT2FKRS) for Travel Route Assignment Artificial Intelligence

Urban Traffic Networks are characterized by high dynamics of traffic flow and increased travel time, including waiting times. This leads to more complex road traffic management. The present research paper suggests an innovative advanced traffic management system based on Hierarchical Interval Type-2 Fuzzy Logic model optimized by the Particle Swarm Optimization (PSO) method. The aim of designing this system is to perform dynamic route assignment to relieve traffic congestion and limit the unexpected fluctuation effects on traffic flow. The suggested system is executed and simulated using SUMO, a well-known microscopic traffic simulator. For the present study, we have tested four large and heterogeneous metropolitan areas located in the cities of Sfax, Luxembourg, Bologna and Cologne. The experimental results proved the effectiveness of learning the Hierarchical Interval type-2 Fuzzy logic using real time particle swarm optimization technique PSO to accomplish multiobjective optimality regarding two criteria: number of vehicles that reach their destination and average travel time. The obtained results are encouraging, confirming the efficiency of the proposed system.

Knowledge Graphs Artificial Intelligence

In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After a general introduction, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs.

A review of machine learning applications in wildfire science and management Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.