Goto

Collaborating Authors

Researchers release open-source photorealistic simulator for autonomous driving

Robohub

VISTA 2.0 is an open-source simulation engine that can make realistic environments for training and testing self-driving cars. Hyper-realistic virtual worlds have been heralded as the best driving schools for autonomous vehicles (AVs), since they've proven fruitful test beds for safely trying out dangerous driving scenarios. Tesla, Waymo, and other self-driving companies all rely heavily on data to enable expensive and proprietary photorealistic simulators, since testing and gathering nuanced I-almost-crashed data usually isn't the most easy or desirable to recreate. To that end, scientists from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) created "VISTA 2.0," a data-driven simulation engine where vehicles can learn to drive in the real world and recover from near-crash scenarios. What's more, all of the code is being open-sourced to the public.


System trains driverless cars in simulation before they hit the road

#artificialintelligence

A simulation system invented at MIT to train driverless cars creates a photorealistic world with infinite steering possibilities, helping the cars learn to navigate a host of worse-case scenarios before cruising down real streets. Control systems, or "controllers," for autonomous vehicles largely rely on real-world datasets of driving trajectories from human drivers. From these data, they learn how to emulate safe steering controls in a variety of situations. But real-world data from hazardous "edge cases," such as nearly crashing or being forced off the road or into other lanes, are -- fortunately -- rare. Some computer programs, called "simulation engines," aim to imitate these situations by rendering detailed virtual roads to help train the controllers to recover.


Researchers release open-source photorealistic simulator for autonomous driving

#artificialintelligence

VISTA 2.0 builds off of the team's previous model, VISTA, and it's fundamentally different from existing AV simulators since it's data-driven -- meaning it was built and photorealistically rendered from real-world data -- thereby enabling direct transfer to reality. While the initial iteration supported only single car lane-following with one camera sensor, achieving high-fidelity data-driven simulation required rethinking the foundations of how different sensors and behavioral interactions can be synthesized. Enter VISTA 2.0: a data-driven system that can simulate complex sensor types and massively interactive scenarios and intersections at scale. With much less data than previous models, the team was able to train autonomous vehicles that could be substantially more robust than those trained on large amounts of real-world data. "This is a massive jump in capabilities of data-driven simulation for autonomous vehicles, as well as the increase of scale and ability to handle greater driving complexity," says Alexander Amini, CSAIL PhD student and co-lead author on two new papers, together with fellow PhD student Tsun-Hsuan Wang.


La veille de la cybersécurité

#artificialintelligence

Hyper-realistic virtual worlds have been heralded as the best driving schools for autonomous vehicles (AVs), since they've proven fruitful test beds for safely trying out dangerous driving scenarios. Tesla, Waymo, and other self-driving companies all rely heavily on data to enable expensive and proprietary photorealistic simulators, since testing and gathering nuanced I-almost-crashed data usually isn't the most easy or desirable to recreate. To that end, scientists from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) created "VISTA 2.0," a data-driven simulation engine where vehicles can learn to drive in the real world and recover from near-crash scenarios. What's more, all of the code is being open-sourced to the public. "Today, only companies have software like the type of simulation environments and capabilities of VISTA 2.0, and this software is proprietary. With this release, the research community will have access to a powerful new tool for accelerating the research and development of adaptive robust control for autonomous driving," says MIT Professor and CSAIL Director Daniela Rus, senior author on a paper about the research.


AADS: Augmented autonomous driving simulation using data-driven algorithms

#artificialintelligence

Simulation systems have become essential to the development and validation of autonomous driving (AD) technologies. The prevailing state-of-the-art approach for simulation uses game engines or high-fidelity computer graphics (CG) models to create driving scenarios. However, creating CG models and vehicle movements (the assets for simulation) remain manual tasks that can be costly and time consuming. In addition, CG images still lack the richness and authenticity of real-world images, and using CG images for training leads to degraded performance. Here, we present our augmented autonomous driving simulation (AADS). Our formulation augmented real-world pictures with a simulated traffic flow to create photorealistic simulation images and renderings. More specifically, we used LiDAR and cameras to scan street scenes. From the acquired trajectory data, we generated plausible traffic flows for cars and pedestrians and composed them into the background. The composite images could be resynthesized with different viewpoints and sensor models (camera or LiDAR). The resulting images are photorealistic, fully annotated, and ready for training and testing of AD systems from perception to planning. We explain our system design and validate our algorithms with a number of AD tasks from detection to segmentation and predictions. Compared with traditional approaches, our method offers scalability and realism. Scalability is particularly important for AD simulations, and we believe that real-world complexity and diversity cannot be realistically captured in a virtual environment. Our augmented approach combines the flexibility of a virtual environment (e.g., vehicle movements) with the richness of the real world to allow effective simulation.