Artificial intelligence achieves near-human performance in diagnosing breast cancer

#artificialintelligence

Pathologists have been largely diagnosing disease the same way for the past 100 years, by manually reviewing images under a microscope. But new work suggests that computers can help doctors improve accuracy and significantly change the way cancer and other diseases are diagnosed. A research team from Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS) recently developed artificial intelligence (AI) methods aimed at training computers to interpret pathology images, with the long-term goal of building AI-powered systems to make pathologic diagnoses more accurate. "Our AI method is based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," explained pathologist Andrew Beck, MD, PhD, Director of Bioinformatics at the Cancer Research Institute at Beth Israel Deaconess Medical Center (BIDMC) and an Associate Professor at Harvard Medical School. "This approach teaches machines to interpret the complex patterns and structure observed in real-life data by building multi-layer artificial neural networks, in a process which is thought to show similarities with the learning process that occurs in layers of neurons in the brain's neocortex, the region where thinking occurs."


UMebnu

#artificialintelligence

A research team from Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS) recently developed artificial intelligence (AI) methods aimed at training computers to interpret pathology images, with the long-term goal of building AI-powered systems to make pathologic diagnoses more accurate. "Our AI method is based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," explained pathologist Andrew Beck, MD, PhD, Director of Bioinformatics at the Cancer Research Institute at Beth Israel Deaconess Medical Center (BIDMC) and an Associate Professor at Harvard Medical School. In an objective evaluation in which researchers were given slides of lymph node cells and asked to determine whether or not they contained cancer, the team's automated diagnostic method proved accurate approximately 92 percent of the time, explained Khosla, adding, "This nearly matched the success rate of a human pathologist, whose results were 96 percent accurate." "But the truly exciting thing was when we combined the pathologist's analysis with our automated computational diagnostic method, the result improved to 99.5 percent accuracy," said Beck.


Artificial intelligence achieves near-human performance in diagnosing breast cancer

#artificialintelligence

A research team from Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS) recently developed artificial intelligence (AI) methods aimed at training computers to interpret pathology images, with the long-term goal of building AI-powered systems to make pathologic diagnoses more accurate. "Our AI method is based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," explained pathologist Andrew Beck, MD, PhD, Director of Bioinformatics at the Cancer Research Institute at Beth Israel Deaconess Medical Center (BIDMC) and an Associate Professor at Harvard Medical School. "This approach teaches machines to interpret the complex patterns and structure observed in real-life data by building multi-layer artificial neural networks, in a process which is thought to show similarities with the learning process that occurs in layers of neurons in the brain's neocortex, the region where thinking occurs." The Beck lab's approach was recently put to the test in a competition held at the annual meeting of the International Symposium of Biomedical Imaging (ISBI), which involved examining images of lymph nodes to decide whether or not they contained breast cancer. The research team of Beck and his lab's post-doctoral fellows Dayong Wang, PhD and Humayun Irshad, PhD, and student Rishab Gargya, together with Aditya Khosla of the MIT Computer Science and Artificial Intelligence Laboratory, placed first in two separate categories, competing against private companies and academic research institutions from around the world.


Artificial Intelligence Gets an A for Accuracy Diagnosing Breast Cancer - Breast Cancer News

#artificialintelligence

A team of researchers at the Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS) in Boston have been working on developing artificial intelligence (AI) tools with potential to significantly change and improve accuracy in cancer and other disease diagnosis. Noting that pathology methods for diagnosing disease have stayed largely the same for the past 100 years with tissue samples manually reviewed under a microscope, the investigative work suggests diagnostic accuracy can be improved by using computers to interpret pathology images. "Our AI method is based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," said Dr. Andrew Beck director of Bioinformatics at the Cancer Research Institute at Beth Israel Deaconess Medical Center (BIDMC) in press release. Beck, who is also an associate professor at Harvard Medical School said the approach teaches machines to interpret the complex patterns and structure observed in real-life data by building multi-layer artificial neural networks thought to be similar to how the learning occurs in the brain neocortex, where thinking occurs. The Beck lab's approach was recently tested in a competition at the annual meeting of the International Symposium of Biomedical Imaging (ISBI) held in Prague, Czech Republic, in April.


Breast cancer diagnosis improves with help from artificial intelligence

#artificialintelligence

The artificial intelligence (AI) system is "based on deep learning, a machine-learning algorithm used for a range of applications including speech recognition and image recognition," explains Andrew Beck, an associate professor in pathology at Harvard Medical School, who heads the team developing the new system at Beth Israel Deaconess Medical Center (BIDMC), in Boston, MA. Prof. Beck and colleagues demonstrated the new AI system in a competition held at the annual meeting of the International Symposium of Biomedical Imaging (ISBI 2016) in Prague in April. He and his colleagues are developing AI methods that train computers to interpret pathology images to improve the accuracy of diagnoses. The approach they are using teaches computers to interpret the complex patterns seen in such images by "building multi-layer artificial neural networks," says Prof. Beck. The process is thought to be similar to the way learning takes place in the layers of neurons in the neocortex of the brain, the region where thinking occurs.