Goto

Collaborating Authors

Learn poker strategies by taking this online class

Mashable

Heads up: All products featured here are selected by Mashable's commerce team and meet our rigorous standards for awesomeness. If you buy something, Mashable may earn an affiliate commission.


Facebook, Carnegie Mellon build first AI that beats pros in 6-player poker

#artificialintelligence

Pluribus is the first AI bot capable of beating human experts in six-player no-limit Hold'em, the most widely played poker format in the world. This is the first time an AI bot has beaten top human players in a complex game with more than two players or two teams. We tested Pluribus against professional poker players, including two winners of the World Series of Poker Main Event. Pluribus succeeds because it can very efficiently handle the challenges of a game with both hidden information and more than two players. It uses self-play to teach itself how to win, with no examples or guidance on strategy. Pluribus uses far fewer computing resources than the bots that have defeated humans in other games. The bot's success will advance AI research, because many important AI challenges involve many players and hidden information. For decades, poker has been a difficult and important grand challenge problem for the field of AI.


'An Absolute Monster Bluffer' -- Facebook & CMU AI Bot Beats Poker Pros

#artificialintelligence

Don't simply "all in" if there's a bot at your Texas hold'em poker table, because Facebook and Carnegie Mellon University's new Pluribus AI system just beat five human pros at the same time -- including a couple of World Series of Poker Champs. AI models had already bettered human poker pros one-on-one, but Pluribus's success in a six-player game signals a huge leap in ability. Texas hold'em is one of the most popular poker variants that involves game theory, gambling, and strategy. To win the game, each play must assemble the best five cards from any combination of two "hole cards" dealt face down to each player and five community cards dealt face up. Players can choose to check, bet, call, raise, and fold.


Superhuman AI for multiplayer poker

#artificialintelligence

In recent years there have been great strides in artificial intelligence (AI), with games often serving as challenge problems, benchmarks, and milestones for progress. Poker has served for decades as such a challenge problem. Past successes in such benchmarks, including poker, have been limited to two-player games. However, poker in particular is traditionally played with more than two players. Multiplayer games present fundamental additional issues beyond those in two-player games, and multiplayer poker is a recognized AI milestone. In this paper we present Pluribus, an AI that we show is stronger than top human professionals in six-player no-limit Texas hold'em poker, the most popular form of poker played by humans. Poker has served as a challenge problem for the fields of artificial intelligence (AI) and game theory for decades (1). In fact, the foundational papers on game theory used poker to illustrate their concepts (2, 3). The reason for this choice is simple: no other popular recreational game captures the challenges of hidden information as effectively and as elegantly as poker. Although poker has been useful as a benchmark for new AI and game-theoretic techniques, the challenge of hidden information in strategic settings is not limited to recreational games.


The Deck Is Not Rigged: Poker and the Limits of AI

#artificialintelligence

Tuomas Sandholm, a computer scientist at Carnegie Mellon University, is not a poker player -- or much of a poker fan, in fact -- but he is fascinated by the game for much the same reason as the great game theorist John von Neumann before him. Von Neumann, who died in 1957, viewed poker as the perfect model for human decision making, for finding the balance between skill and chance that accompanies our every choice. He saw poker as the ultimate strategic challenge, combining as it does not just the mathematical elements of a game like chess but the uniquely human, psychological angles that are more difficult to model precisely -- a view shared years later by Sandholm in his research with artificial intelligence. WHAT I LEFT OUT is a recurring feature in which book authors are invited to share anecdotes and narratives that, for whatever reason, did not make it into their final manuscripts. In this installment, Maria Konnikova shares a story that was left out of "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win" (Penguin Press). "Poker is the main benchmark and challenge program for games of imperfect information," Sandholm told me on a warm spring afternoon in 2018, when we met in his offices in Pittsburgh.