History of artificial intelligence - Wikipedia, the free encyclopedia


The history of artificial intelligence (AI) began in antiquity, with myths, stories and rumors of artificial beings endowed with intelligence or consciousness by master craftsmen; as Pamela McCorduck writes, AI began with "an ancient wish to forge the gods."[1] The seeds of modern AI were planted by classical philosophers who attempted to describe the process of human thinking as the mechanical manipulation of symbols. This work culminated in the invention of the programmable digital computer in the 1940s, a machine based on the abstract essence of mathematical reasoning. This device and the ideas behind it inspired a handful of scientists to begin seriously discussing the possibility of building an electronic brain. The Turing test was proposed by British mathematician Alan Turing in his 1950 paper Computing Machinery and Intelligence, which opens with the words: "I propose to consider the question, 'Can machines think?'" The term'Artificial Intelligence' was created at a conference held at Dartmouth College in 1956.[2] Allen Newell, J. C. Shaw, and Herbert A. Simon pioneered the newly created artificial intelligence field with the Logic Theory Machine (1956), and the General Problem Solver in 1957.[3] In 1958, John McCarthy and Marvin Minsky started the MIT Artificial Intelligence lab with 50,000.[4] John McCarthy also created LISP in the summer of 1958, a programming language still important in artificial intelligence research.[5] In 1973, in response to the criticism of James Lighthill and ongoing pressure from congress, the U.S. and British Governments stopped funding undirected research into artificial intelligence. Seven years later, a visionary initiative by the Japanese Government inspired governments and industry to provide AI with billions of dollars, but by the late 80s the investors became disillusioned and withdrew funding again. McCorduck (2004) writes "artificial intelligence in one form or another is an idea that has pervaded Western intellectual history, a dream in urgent need of being realized," expressed in humanity's myths, legends, stories, speculation and clockwork automatons.[6] Mechanical men and artificial beings appear in Greek myths, such as the golden robots of Hephaestus and Pygmalion's Galatea.[7] In the Middle Ages, there were rumors of secret mystical or alchemical means of placing mind into matter, such as J?bir ibn Hayy?n's Takwin, Paracelsus' homunculus and Rabbi Judah Loew's Golem.[8] By the 19th century, ideas about artificial men and thinking machines were developed in fiction, as in Mary Shelley's Frankenstein or Karel?apek's

Artificial Intelligence: Structures and Strategies for Complex Problem Solving

AITopics Original Links

Many and long were the conversations between Lord Byron and Shelley to which I was a devout and silent listener. During one of these, various philosophical doctrines were discussed, and among others the nature of the principle of life, and whether there was any probability of its ever being discovered and communicated. They talked of the experiments of Dr. Darwin (I speak not of what the doctor really did or said that he did, but, as more to my purpose, of what was then spoken of as having been done by him), who preserved a piece of vermicelli in a glass case till by some extraordinary means it began to move with a voluntary motion. Not thus, after all, would life be given. Perhaps a corpse would be reanimated; galvanism had given token of such things: perhaps the component parts of a creature might be manufactured, brought together, and endued with vital warmth (Butler 1998).

The Birth of AI and The First AI Hype Cycle


Every decade seems to have its technological buzzwords: we had personal computers in 1980s; Internet and worldwide web in 1990s; smart phones and social media in 2000s; and Artificial Intelligence (AI) and Machine Learning in this decade. While artificial intelligence (AI) is among today's most popular topics, a commonly forgotten fact is that it was actually born in 1950 and went through a hype cycle between 1956 and 1982. The purpose of this article is to highlight some of the achievements that took place during the boom phase of this cycle and explain what led to its bust phase. The lessons to be learned from this hype cycle should not be overlooked – its successes formed the archetypes for machine learning algorithms used today, and its shortcomings indicated the dangers of overenthusiasm in promising fields of research and development. Although the first computers were developed during World War II [1,2], what seemed to truly spark the field of AI was a question proposed by Alan Turing in 1950 [3]: can a machine imitate human intelligence?

KF: Escaping the Local Minimum


This report is my final project for the MIT Media Lab Class "Integrative Theories of Mind and Cognition" (also known as Future of AI, and New Destinations in Artificial Intelligence) in Spring 2016. Artificial Intelligence performs gradient descent. The AI field discovers a path of success, and then travels that path until progress stops (when a local minimum is reached). Then, the field resets and chooses a new path, thus repeating the process. If this trend continues, AI should soon reach a local minimum, causing the next AI winter. However, recent methods provide an opportunity to escape the local minimum. To continue recent success, it is necessary to compare the current progress to all prior progress in AI. I begin this paper by pointing out a concerning pattern in the field of AI and describing how it can be useful to model the field's behavior. The paper is then divided into two main sections. In the first section of this paper, I argue that the field of artificial intelligence, itself, has been performing gradient descent. I catalog a repeating trend in the field: a string of successes, followed by a sudden crash, followed by a change in direction. In the second section, I describe steps that should be taken to prevent the current trends from falling into a local minimum. I present a number of examples from the past that deep learning techniques are currently unable to accomplish. Finally, I summarize my findings and conclude by reiterating the use of the gradient descent model.

What Is Artificial Intelligence (AI)?


In September 1955, John McCarthy, a young assistant professor of mathematics at Dartmouth College, boldly proposed that "every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it." McCarthy called this new field of study "artificial intelligence," and suggested that a two-month effort by a group of 10 scientists could make significant advances in developing machines that could "use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves." At the time, scientists optimistically believed we would soon have thinking machines doing any work a human could do. Now, more than six decades later, advances in computer science and robotics have helped us automate many of the tasks that previously required the physical and cognitive labor of humans. But true artificial intelligence, as McCarthy conceived it, continues to elude us.