Predicting Diabetes Using a Machine Learning Approach - DZone Big Data


Diabetes is one of deadliest diseases in the world. It is not only a disease but also a creator of different kinds of diseases like heart attack, blindness, kidney diseases, etc. The normal identifying process is that patients need to visit a diagnostic center, consult their doctor, and sit tight for a day or more to get their reports. Moreover, every time they want to get their diagnosis report, they have to waste their money in vain. But with the rise of Machine Learning approaches we have the ability to find a solution to this issue, we have developed a system using data mining which has the ability to predict whether the patient has diabetes or not.

Robust Maximum Likelihood Estimation of Sparse Vector Error Correction Model Machine Learning

In econometrics and finance, the vector error correction model (VECM) is an important time series model for cointegration analysis, which is used to estimate the long-run equilibrium variable relationships. The traditional analysis and estimation methodologies assume the underlying Gaussian distribution but, in practice, heavy-tailed data and outliers can lead to the inapplicability of these methods. In this paper, we propose a robust model estimation method based on the Cauchy distribution to tackle this issue. In addition, sparse cointegration relations are considered to realize feature selection and dimension reduction. An efficient algorithm based on the majorization-minimization (MM) method is applied to solve the proposed nonconvex problem. The performance of this algorithm is shown through numerical simulations.

Bayesian Anomaly Detection Using Extreme Value Theory Machine Learning

Data-driven anomaly detection methods typically build a model for the normal behavior of the target system, and score each data instance with respect to this model. A threshold is invariably needed to identify data instances with high (or low) scores as anomalies. This presents a practical limitation on the applicability of such methods, since most methods are sensitive to the choice of the threshold, and it is challenging to set optimal thresholds. We present a probabilistic framework to explicitly model the normal and anomalous behaviors and probabilistically reason about the data. An extreme value theory based formulation is proposed to model the anomalous behavior as the extremes of the normal behavior. As a specific instantiation, a joint non-parametric clustering and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as a Dirichlet Process Mixture Model. A pseudo-Gibbs sampling based strategy is used for inference. Results on a variety of data sets show that the proposed method provides effective clustering and anomaly detection without requiring strong initialization and thresholding parameters.

Thompson sampling with the online bootstrap Machine Learning

Thompson sampling provides a solution to bandit problems in which new observations are allocated to arms with the posterior probability that an arm is optimal. While sometimes easy to implement and asymptotically optimal, Thompson sampling can be computationally demanding in large scale bandit problems, and its performance is dependent on the model fit to the observed data. We introduce bootstrap Thompson sampling (BTS), a heuristic method for solving bandit problems which modifies Thompson sampling by replacing the posterior distribution used in Thompson sampling by a bootstrap distribution. We first explain BTS and show that the performance of BTS is competitive to Thompson sampling in the well-studied Bernoulli bandit case. Subsequently, we detail why BTS using the online bootstrap is more scalable than regular Thompson sampling, and we show through simulation that BTS is more robust to a misspecified error distribution. BTS is an appealing modification of Thompson sampling, especially when samples from the posterior are otherwise not available or are costly.