Datalog: Bag Semantics via Set Semantics

arXiv.org Artificial Intelligence

Duplicates in data management are common and problematic. In this work, we present a translation of Datalog under bag semantics into a well-behaved extension of Datalog (the so-called warded Datalog+-) under set semantics. From a theoretical point of view, this allows us to reason on bag semantics by making use of the well-established theoretical foundations of set semantics. From a practical point of view, this allows us to handle the bag semantics of Datalog by powerful, existing query engines for the required extension of Datalog. Moreover, this translation has the potential for further extensions -- above all to capture the bag semantics of the semantic web query language SPARQL.


Sentiment Analysis with Talend & Stanford CoreNLP Datalytyx

@machinelearnbot

In my previous blog, I showed you how to integrate Stanford CoreNLP with Talend using a simple example. In this post I'll show you how to modify that code in order to make the most of Talend's strengths as a data integration tool. Below is a Talend job I have built to read some tweets from a database (see this blog article for information on how to retrieve tweets with Talend), run the text through the CoreNLP sentiment analysis code, and then write tweets back to the database with the addition of the sentiment. In this particular example, the text to be analysed are tweets coming from a database. However, the same job will work with any string input.


Special Track on Artificial Intelligence for Big Social Data Analysis

AAAI Conferences

This track includes data-related tasks such as analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy, with special focus on social data on the web. Hence, the broader context of the track comprehends AI, web mining, information retrieval, natural language processing, and sentiment analysis. As the web rapidly evolves, web users are evolving with it. In an era of social connectedness, people are becoming increasingly enthusiastic about interacting, sharing, and collaborating through social networks, online communities, blogs, wikis, and other online collaborative media. In recent years, this collective intelligence has spread to many different areas, with particular focus on fields related to everyday life such as commerce, tourism, education, and health, causing the size of the social web to expand exponentially. The distillation of knowledge from such a large amount of unstructured information, however, is an extremely difficult task, as the contents of today’s web are perfectly suitable for human consumption, but remain hardly accessible to machines. The opportunity to capture the opinions of the general public about social events, political movements, company strategies, marketing campaigns, and product preferences has raised growing interest both within the scientific community, leading to many exciting open challenges, as well as in the business world, due to the remarkable benefits to be had from marketing and financial market prediction. The primary aim of this track is exploring the new frontiers of big data computing for opinion mining and sentiment analysis through machine learning techniques, knowledge-based systems, adaptive and transfer learning, in order to more efficiently retrieve and extract social information from the web.


Microsoft readies new Dynamics 365-branded HCM apps, virtual customer service agents

ZDNet

Microsoft is expanding its Dynamics 365 ERP/CRM portfolio with more apps in the human capital management (HCM) space. Microsoft introduced its first dedicated HCM application in April, called Dynamics 365 for Talent. That application, which became available for purchase in July, integrates with LinkedIn Recruiter and provides a consolidated HR profile, spanning Office 365 Dynamics 365 and LinkedIn profiles. At the company's Ignite IT pro conference in Orlando this week, Microsoft officials announced plans for two additional HCM apps: Dynamics 365 for Talent: Attract and Dynamics 365 for Talent: Onboard. Officials described these two new additions, which they said will be available later this year, as more modular software as a service (SaaS) apps.


Ethical AI: 7 Artificial Intelligence Research Organisations to Watch 2017

#artificialintelligence

Christina is audience development editor. After graduating from the University of Nottingham reading philosophy and theology in 2013, Christina joined a tech start-up specialising in mobile apps. She has a keen interest in the mobile platform and innovative tech. In recent years AI has brought us some pretty impressive and widely used tech, from the image recognition being used by Facebook to speech recognition technology at work in Amazon's Alexa or Apple's Siri. It's these breakthroughs in deep learning and neural networks that have led to some of the most exciting yet also worrying times in tech.