Goto

Collaborating Authors

Computational Neuroscience Coursera

@machinelearnbot

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information.



Salesforce Einstein Discovery - Easy AI and Machine Learning

@machinelearnbot

Salesforce has done it again. They are taming the complexity of Artificial Intelligence, enabling you to make massive amounts of decisions and discover patterns in reams of data, all with clicks instead of code. This course is for the absolute beginner to Artificial Intelligence (AI), Machine Learning, Deep Learning, and Data Science. If you are feeling overwhelmed by either the tsunami of data that you are tasked with trying to make sense out of, or overwhelmed by the tsunami of media coverage around Artificial Intelligence, Deep Learning, Data Science, and Machine Learning, I am here to share a competitive advantage. There is an AI and Data Discovery platform that can be constructed and configured with clicks instead of code.



How Widely Can Prediction Models be Generalized? An Analysis of Performance Prediction in Blended Courses

arXiv.org Machine Learning

Blended courses that mix in-person instruction with online platforms are increasingly popular in secondary education. These tools record a rich amount of data on students' study habits and social interactions. Prior research has shown that these metrics are correlated with students' performance in face to face classes. However, predictive models for blended courses are still limited and have not yet succeeded at early prediction or cross-class predictions even for repeated offerings of the same course. In this work, we use data from two offerings of two different undergraduate courses to train and evaluate predictive models on student performance based upon persistent student characteristics including study habits and social interactions. We analyze the performance of these models on the same offering, on different offerings of the same course, and across courses to see how well they generalize. We also evaluate the models on different segments of the courses to determine how early reliable predictions can be made. This work tells us in part how much data is required to make robust predictions and how cross-class data may be used, or not, to boost model performance. The results of this study will help us better understand how similar the study habits, social activities, and the teamwork styles are across semesters for students in each performance category. These trained models also provide an avenue to improve our existing support platforms to better support struggling students early in the semester with the goal of providing timely intervention.