Cross-lingual Propagation for Morphological Analysis

AAAI Conferences

Multilingual parallel text corpora provide a powerful means for propagating linguistic knowledge across languages. We present a model which jointly learns linguistic structure for each language while inducing links between them. Our model supports fully symmetrical knowledge transfer, utilizing any combination of supervised and unsupervised data across language barriers. The proposed nonparametric Bayesian model effectively combines cross-lingual alignment with target language predictions. This architecture is a potent alternative to projection methods which decompose these decisions into two separate stages. We apply this approach to the task of morphological segmentation, where the goal is to separate a word into its individual morphemes. When tested on a parallel corpus of Hebrew and Arabic, our joint bilingual model effectively incorporates all available evidence from both languages, yielding significant performance gains.

Provable Algorithms for Inference in Topic Models Machine Learning

Recently, there has been considerable progress on designing algorithms with provable guarantees -- typically using linear algebraic methods -- for parameter learning in latent variable models. But designing provable algorithms for inference has proven to be more challenging. Here we take a first step towards provable inference in topic models. We leverage a property of topic models that enables us to construct simple linear estimators for the unknown topic proportions that have small variance, and consequently can work with short documents. Our estimators also correspond to finding an estimate around which the posterior is well-concentrated. We show lower bounds that for shorter documents it can be information theoretically impossible to find the hidden topics. Finally, we give empirical results that demonstrate that our algorithm works on realistic topic models. It yields good solutions on synthetic data and runs in time comparable to a {\em single} iteration of Gibbs sampling.

The Author-Topic Model for Authors and Documents Machine Learning

We introduce the author-topic model, a generative model for documents that extends Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003) to include authorship information. Each author is associated with a multinomial distribution over topics and each topic is associated with a multinomial distribution over words. A document with multiple authors is modeled as a distribution over topics that is a mixture of the distributions associated with the authors. We apply the model to a collection of 1,700 NIPS conference papers and 160,000 CiteSeer abstracts. Exact inference is intractable for these datasets and we use Gibbs sampling to estimate the topic and author distributions. We compare the performance with two other generative models for documents, which are special cases of the author-topic model: LDA (a topic model) and a simple author model in which each author is associated with a distribution over words rather than a distribution over topics. We show topics recovered by the author-topic model, and demonstrate applications to computing similarity between authors and entropy of author output.

Sparse Stochastic Inference for Latent Dirichlet allocation Machine Learning

We present a hybrid algorithm for Bayesian topic models that combines the efficiency of sparse Gibbs sampling with the scalability of online stochastic inference. We used our algorithm to analyze a corpus of 1.2 million books (33 billion words) with thousands of topics. Our approach reduces the bias of variational inference and generalizes to many Bayesian hidden-variable models.

Temporal Topic Analysis with Endogenous and Exogenous Processes

AAAI Conferences

We consider the problem of modeling temporal textual data taking endogenous and exogenous processes into account. Such text documents arise in real world applications, including job advertisements and economic news articles, which are influenced by the fluctuations of the general economy. We propose a hierarchical Bayesian topic model which imposes a "group-correlated" hierarchical structure on the evolution of topics over time incorporating both processes, and show that this model can be estimated from Markov chain Monte Carlo sampling methods. We further demonstrate that this model captures the intrinsic relationships between the topic distribution and the time-dependent factors, and compare its performance with latent Dirichlet allocation (LDA) and two other related models. The model is applied to two collections of documents to illustrate its empirical performance: online job advertisements from DirectEmployers Association and journalists' postings on