Performance Impact Caused by Hidden Bias of Training Data for Recognizing Textual Entailment Artificial Intelligence

The quality of training data is one of the crucial problems when a learning-centered approach is employed. This paper proposes a new method to investigate the quality of a large corpus designed for the recognizing textual entailment (RTE) task. The proposed method, which is inspired by a statistical hypothesis test, consists of two phases: the first phase is to introduce the predictability of textual entailment labels as a null hypothesis which is extremely unacceptable if a target corpus has no hidden bias, and the second phase is to test the null hypothesis using a Naive Bayes model. The experimental result of the Stanford Natural Language Inference (SNLI) corpus does not reject the null hypothesis. Therefore, it indicates that the SNLI corpus has a hidden bias which allows prediction of textual entailment labels from hypothesis sentences even if no context information is given by a premise sentence. This paper also presents the performance impact of NN models for RTE caused by this hidden bias.

A Generalization of the Chow-Liu Algorithm and its Application to Statistical Learning Artificial Intelligence

We extend the Chow-Liu algorithm for general random variables while the previous versions only considered finite cases. In particular, this paper applies the generalization to Suzuki's learning algorithm that generates from data forests rather than trees based on the minimum description length by balancing the fitness of the data to the forest and the simplicity of the forest. As a result, we successfully obtain an algorithm when both of the Gaussian and finite random variables are present.

Phase transitions and sample complexity in Bayes-optimal matrix factorization Machine Learning

We analyse the matrix factorization problem. Given a noisy measurement of a product of two matrices, the problem is to estimate back the original matrices. It arises in many applications such as dictionary learning, blind matrix calibration, sparse principal component analysis, blind source separation, low rank matrix completion, robust principal component analysis or factor analysis. It is also important in machine learning: unsupervised representation learning can often be studied through matrix factorization. We use the tools of statistical mechanics - the cavity and replica methods - to analyze the achievability and computational tractability of the inference problems in the setting of Bayes-optimal inference, which amounts to assuming that the two matrices have random independent elements generated from some known distribution, and this information is available to the inference algorithm. In this setting, we compute the minimal mean-squared-error achievable in principle in any computational time, and the error that can be achieved by an efficient approximate message passing algorithm. The computation is based on the asymptotic state-evolution analysis of the algorithm. The performance that our analysis predicts, both in terms of the achieved mean-squared-error, and in terms of sample complexity, is extremely promising and motivating for a further development of the algorithm.

Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data Machine Learning

This paper analyzes consumer choices over lunchtime restaurants using data from a sample of several thousand anonymous mobile phone users in the San Francisco Bay Area. The data is used to identify users' approximate typical morning location, as well as their choices of lunchtime restaurants. We build a model where restaurants have latent characteristics (whose distribution may depend on restaurant observables, such as star ratings, food category, and price range), each user has preferences for these latent characteristics, and these preferences are heterogeneous across users. Similarly, each item has latent characteristics that describe users' willingness to travel to the restaurant, and each user has individual-specific preferences for those latent characteristics. Thus, both users' willingness to travel and their base utility for each restaurant vary across user-restaurant pairs. We use a Bayesian approach to estimation. To make the estimation computationally feasible, we rely on variational inference to approximate the posterior distribution, as well as stochastic gradient descent as a computational approach. Our model performs better than more standard competing models such as multinomial logit and nested logit models, in part due to the personalization of the estimates. We analyze how consumers re-allocate their demand after a restaurant closes to nearby restaurants versus more distant restaurants with similar characteristics, and we compare our predictions to actual outcomes. Finally, we show how the model can be used to analyze counterfactual questions such as what type of restaurant would attract the most consumers in a given location.